51 research outputs found

    Increased Hydrogen Production by Genetic Engineering of Escherichia coli

    Get PDF
    Escherichia coli is capable of producing hydrogen under anaerobic growth conditions. Formate is converted to hydrogen in the fermenting cell by the formate hydrogenlyase enzyme system. The specific hydrogen yield from glucose was improved by the modification of transcriptional regulators and metabolic enzymes involved in the dissimilation of pyruvate and formate. The engineered E. coli strains ZF1 (ΔfocA; disrupted in a formate transporter gene) and ZF3 (ΔnarL; disrupted in a global transcriptional regulator gene) produced 14.9, and 14.4 µmols of hydrogen/mg of dry cell weight, respectively, compared to 9.8 µmols of hydrogen/mg of dry cell weight generated by wild-type E. coli strain W3110. The molar yield of hydrogen for strain ZF3 was 0.96 mols of hydrogen/mol of glucose, compared to 0.54 mols of hydrogen/mol of glucose for the wild-type E. coli strain. The expression of the global transcriptional regulator protein FNR at levels above natural abundance had a synergistic effect on increasing the hydrogen yield in the ΔfocA genetic background. The modification of global transcriptional regulators to modulate the expression of multiple operons required for the biosynthesis of formate hydrogenlyase represents a practical approach to improve hydrogen production

    Characteristics and management of HIV-1-infected pregnant women enrolled in a randomised trial: differences between Europe and the USA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rates of mother-to-child transmission of HIV-1 (MTCT) have historically been lower in European than in American cohort studies, possibly due to differences in population characteristics. The Pediatric AIDS Clinical Trials Group Protocol (PACTG) 316 trial evaluated the effectiveness of the addition of intrapartum/neonatal nevirapine in reducing MTCT in women already receiving antiretroviral prophylaxis. Participation of large numbers of pregnant HIV-infected women from the US and Western Europe enrolling in the same clinical trial provided the opportunity to identify and explore differences in their characteristics and in the use of non-study interventions to reduce MTCT.</p> <p>Methods</p> <p>In this secondary analysis, 1350 women were categorized according to enrollment in centres in the USA (n = 978) or in Europe (n = 372). Factors associated with receipt of highly active antiretroviral therapy and with elective caesarean delivery were identified with logistic regression.</p> <p>Results</p> <p>In Europe, women enrolled were more likely to be white and those of black race were mainly born in Sub-Saharan Africa. Women in the US were younger and more likely to have previous pregnancies and miscarriages and a history of sexually transmitted infections.</p> <p>More than 90% of women did not report symptoms of their HIV infection; however, more women from the US had symptoms (8%), compared to women from Europe (4%). Women in the US were less likely to have HIV RNA levels <400 copies/ml at delivery than women enrolling in Europe, and more likely to receive highly active antiretroviral therapy, and to start therapy earlier in pregnancy. The elective caesarean delivery rate in Europe was 61%, significantly higher than that in the US (22%). Overall, 1.48% of infants were infected and there was no significant difference in the rate of transmission between Europe and the US despite the different approaches to treatment and delivery.</p> <p>Conclusion</p> <p>These findings confirm that there are important historical differences between the HIV-infected pregnant populations in Western Europe and the USA, both in terms of the characteristics of the women and their obstetric and therapeutic management. Although highly active antiretroviral therapy predominates in pregnancy in both settings now, population differences are likely to remain.</p> <p>Trial registration</p> <p>NCT00000869</p

    Multiomic analysis of stretched osteocytes reveals processes and signalling linked to bone regeneration and cancer

    Get PDF
    Exercise is a non-pharmacological intervention that can enhance bone regeneration and improve the management of bone conditions like osteoporosis or metastatic bone cancer. Therefore, it is gaining increasing importance in an emerging area of regenerative medicine—regenerative rehabilitation (RR). Osteocytes are mechanosensitive and secretory bone cells that orchestrate bone anabolism and hence postulated to be an attractive target of regenerative exercise interventions. However, the human osteocyte signalling pathways and processes evoked upon exercise remain to be fully identified. Making use of a computer-controlled bioreactor that mimics exercise and the latest omics approaches, RNA sequencing (RNA-seq) and tandem liquid chromatography-mass spectrometry (LC-MS), we mapped the transcriptome and secretome of mechanically stretched human osteocytic cells. We discovered that a single bout of cyclic stretch activated network processes and signalling pathways likely to modulate bone regeneration and cancer. Furthermore, a comparison between the transcriptome and secretome of stretched human and mouse osteocytic cells revealed dissimilar results, despite both species sharing evolutionarily conserved signalling pathways. These findings suggest that osteocytes can be targeted by exercise-driven RR protocols aiming to modulate bone regeneration or metastatic bone cancer

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore