18 research outputs found

    The effects of extreme floods on the biophysical heterogeneity of river landscapes

    No full text
    Studies of large infrequent disturbances, such as the Mount St Helens volcanic eruption, the 1988 Yellowstone National Park fires, and Hurricane Hugo, show that such events leave a heterogeneous imprint on a landscape, and that this imprint subsequently influences ecological response. But what imprint does a large infrequent flood disturbance leave on a river landscape, and how does the imprint influence river ecosystem response to disturbance? We used a landscape ecological framework to examine the associations between the imprint of an extreme flood and the response of woody riparian vegetation in the Sabie River (Kruger National Park, South Africa) landscape. We found that the flood left a heterogeneous imprint, consisting of remnant vegetated patches, remnant physical patches, and newly created physical patches. The structure and composition of riparian vegetation assemblages subsequently differed among these patches. Heterogeneity of the river landscape mosaic may result in multiple trajectories of ecological response to the flood, with important consequences for biodiversity conservation in Kruger National Park

    Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis

    Get PDF
    Intraluminal thrombus is a consistent feature of human abdominal aortic aneurysm (AAA). Coagulation factor Xa (FXa) catalyses FII to thrombin (FIIa). We examined the effect of FXa/FIIa inhibition on experimental aortic aneurysm in apolipoprotein E-deficient (ApoE '/') mice infused with angiotensin II (AngII). The concentration of FXa within the supra-renal aorta (SRA) correlated positively with SRA diameter. Parenteral administration of enoxaparin (FXa/IIa inhibitor) and fondaparinux (FXa inhibitor) over 14 days reduced to severity of aortic aneurysm and atherosclerosis in AngII-infused ApoE '/' mice. Enteral administration of the FIIa inhibitor dabigatran had no significant effect. Aortic protease-activated receptor (PAR)-2 expression increased in response to AngII infusion. Fondaparinux reduced SRA levels of FXa, FIIa, PAR-2, matrix metalloproteinase (MMP)2, Smad2/3 phosphorylation, and MOMA-2 positive cells in the mouse model. FXa stimulated Smad2/3 phosphorylation and MMP2 expression in aortic vascular smooth muscle cells (VSMC) in vitro. Expression of MMP2 in FXa-stimulated VSMC was downregulated in the presence of a PAR-2 but not a PAR-1 inhibitor. These findings suggest that FXa/FIIa inhibition limits aortic aneurysm and atherosclerosis severity due to down-regulation of vascular PAR-2-mediated Smad2/3 signalling and MMP2 expression. Inhibition of FXa/FIIa may be a potential therapy for limiting aortic aneurysm. © The Author(s) 2017

    Impact of elevated anti-apoptotic MCL-1 and BCL-2 on the development and treatment of MLL-AF9 AML in mice

    Get PDF
    Many acute myeloid leukaemias (AMLs) express high levels of BCL-2 and MCL-1, especially after therapy. To test the impact of these anti-apoptotic proteins on AML development and treatment, we used haemopoietic reconstitution to generate MLL-AF9 AMLs expressing BCL-2 or Mcl-1 transgenes. AMLs with elevated BCL-2 or MCL-1 had a higher proportion of mature myeloid cells but, like conventional MLL-AF9 AMLs, were readily transplantable. Short-term cell lines established from multiple primary AMLs of each genotype were tested in vitro for susceptibility to chemotherapeutics currently used for treating AML (daunorubicin, etoposide, cytarabine); the proteasome inhibitor bortezomib; CDK7/9 inhibitors; and BH3 mimetics, which bind and inhibit pro-survival proteins. The BH3 mimetics tested, alone and in combination with the other drugs, were: ABT-737 which, like its clinical counterpart navitoclax, targets BCL-2, BCL-XL and BCL-W; BCL-2-specific ABT-199 (venetoclax); BCL-XL-specific A-1331852; and S63845, a new MCL-1-specific BH3 mimetic. As single agents, daunorubicin and bortezomib had the greatest efficacy. Elevated MCL-1 or BCL-2 reduced sensitivity to daunorubicin but, surprisingly, not to bortezomib. MCL-1 markedly enhanced resistance to ABT-737 and ABT-199 but not S63845, and BCL-2 increased resistance to S63845 but not to ABT-737 or ABT-199. Notable synergies were achieved by combining BH3 mimetics with daunorubicin: S63845 increased the sensitivity of both MCL-1 and BCL-2 overexpressing MLL-AF9 AMLs, and ABT-737 aided in killing those overexpressing BCL-2. Synergy between daunorubicin and ABT-199 was also apparent in vivo, although not curative. Impressive synergistic responses were achieved for human MLL-fusion AML cell lines treated with daunorubicin plus either ABT-737, ABT-199 or S63845, and with ABT-199 plus S63845, with or without daunorubicin. Our data suggest that AML patients may benefit from combining conventional cytotoxic drugs with BH3 mimetics targeting BCL-2 or MCL-1 or, if tolerated, both these agents
    corecore