158 research outputs found

    Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants

    Get PDF
    Most insect migrants fly at considerable altitudes (hundreds of meters above the ground) where they utilize fast-flowing winds to achieve rapid and comparatively long-distance transport. The nocturnal aerial migrant fauna has been well studied with entomological radars, and many studies have demonstrated that flight orientations are frequently grouped around a common direction in a range of nocturnal insect migrants. Common orientation typically occurs close to the downwind direction (thus ensuring that a large component of the insects' self-powered speed is directed downstream), and in nocturnal insects at least, the downwind headings are seemingly maintained by direct detection of wind-related turbulent cues. Despite being far more abundant and speciose, the day-flying windborne migrant fauna has been much less studied by radar; thus the frequency of wind-related common orientation patterns and the sensory mechanisms involved in their formation remain to be established. Here, we analyze a large dataset of >600,000 radar-detected "medium-sized" windborne insect migrants (body mass from 10 to 70 mg), flying hundreds of meters above southern UK, during the afternoon, in the period around sunset, and in the middle of the night. We found that wind-related common orientation was almost ubiquitous during the day (present in 97% of all β€œmigration events” analyzed), and was also frequent at sunset (85%) and at night (81%). Headings were systematically offset to the right of the flow at night-time (as predicted from the use of turbulence cues for flow assessment), but there was no directional bias in the offsets during the day or at sunset. Orientation "performance” significantly increased with increasing flight altitude throughout the day and night. We conclude by discussing sensory mechanisms which most likely play a role in the selection and maintenance of wind-related flight headings

    Solar-type dynamo behaviour in fully convective stars without a tachocline

    Get PDF
    In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016). Author's version, including Method

    Life and times:synthesis, trafficking, and evolution of VSG

    Get PDF
    Evasion of the acquired immune response in African trypanosomes is principally mediated by antigenic variation, the sequential expression of distinct variant surface glycoproteins (VSGs) at extremely high density on the cell surface. Sequence diversity between VSGs facilitates escape of a subpopulation of trypanosomes from antibody-mediated killing. Significant advances have increased understanding of the mechanisms underpinning synthesis and maintenance of the VSG coat. In this review, we discuss the biosynthesis, trafficking, and turnover of VSG, emphasising those unusual mechanisms that act to maintain coat integrity and to protect against immunological attack. We also highlight new findings that suggest the presence of unique or highly divergent proteins that may offer therapeutic opportunities, as well as considering aspects of VSG biology that remain to be fully explored

    Decay Kinetics of an Interferon Gamma Release Assay with Anti-Tuberculosis Therapy in Newly Diagnosed Tuberculosis Cases

    Get PDF
    Qualitative and quantitative changes in IGRA response offer promise as biomarkers to monitor Tuberculosis (TB) drug therapy, and for the comparison of new interventions. We studied the decay kinetics of TB-specific antigen T-cell responses measured with an in-house ELISPOT assay during the course of therapy.Newly diagnosed sputum smear positive TB cases with typical TB chest radiographs were recruited. All patients were given standard anti-TB treatment. Each subject was followed up for 6 months and treatment outcomes were documented. Blood samples were obtained for the ESAT-6 and CFP-10 (EC) ELISPOT at diagnosis, 1-, 2-, 4- and 6-months. Qualitative and quantitative reversion of the ELISPOT results were assessed with McNemar test, conditional logistic regression and mixed-effects hierarchical Poisson models.A total of 116 cases were recruited and EC ELISPOT was positive for 87% (95 of 109) at recruitment. There was a significant decrease in the proportion of EC ELISPOT positive cases over the treatment period (p<0.001). Most of the reversion occurred between the start and first month of treatment and at completion at 6 months. ESAT-6 had higher median counts compared to CFP-10 at all time points. Counts for each antigen declined significantly with therapy (p<0.001). Reverters had lower median SFUs at the start of treatment compared to non-Reverters for both antigens. Apart from the higher median counts for non-Reverters, no other risk factors for non-reversion were found.TB treatment induces qualitative and quantitative reversion of a positive in-house IGRA in newly diagnosed cases of active TB disease. As this does not occur reliably in the majority of cured individuals, qualitative and quantitative reversion of an IGRA ELISPOT has limited clinical utility as a surrogate marker of treatment efficacy

    Absent otoacoustic emissions predict otitis media in young Aboriginal children: A birth cohort study in Aboriginal and non-Aboriginal children in an arid zone of Western Australia

    Get PDF
    AbstractBackground: Otitis media (OM) is the most common paediatric illness for which antibiotics areprescribed. In Australian Aboriginal children OM is frequently asymptomatic and starts at a youngerage, is more common and more likely to result in hearing loss than in non-Aboriginal children.Absent transient evoked otoacoustic emissions (TEOAEs) may predict subsequent risk of OM.Methods: 100 Aboriginal and 180 non-Aboriginal children in a semi-arid zone of WesternAustralia were followed regularly from birth to age 2 years. Tympanometry was conducted atroutine field follow-up from age 3 months. Routine clinical examination by an ENT specialist wasto be done 3 times and hearing assessment by an audiologist twice. TEOAEs were measured at ages&lt;1 and 1–2 months. Cox proportional hazards model was used to investigate the associationbetween absent TEOAEs and subsequent risk of OM.Results: At routine ENT specialist clinics, OM was detected in 55% of 184 examinations inAboriginal children and 26% of 392 examinations in non-Aboriginal children; peak prevalence was72% at age 5–9 months in Aboriginal children and 40% at 10–14 months in non-Aboriginal children.Moderate-severe hearing loss was present in 32% of 47 Aboriginal children and 7% of 120 non-Aboriginal children aged 12 months or more.TEOAE responses were present in 90% (46/51) of Aboriginal children and 99% (120/121) of non-Aboriginal children aged &lt;1 month and in 62% (21/34) and 93% (108/116), respectively, inAboriginal and non-Aboriginal children at age 1–2 months. Aboriginal children who failed TEOAEat age 1–2 months were 2.6 times more likely to develop OM subsequently than those who passed.Overall prevalence of type B tympanograms at field follow-up was 50% (n = 78) in Aboriginalchildren and 20% (n = 95) in non-Aboriginal children

    Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS). To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM) and magnetization transfer imaging (MTI) which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity.</p> <p>Methods</p> <p>Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2.</p> <p>Results</p> <p>Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally.</p> <p>Conclusion</p> <p>Our MRI <it>in vivo </it>neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function.</p

    The Glucuronyltransferase GlcAT-P Is Required for Stretch Growth of Peripheral Nerves in Drosophila

    Get PDF
    During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail
    • …
    corecore