64 research outputs found

    Spectrum of TeV Particles in Warped Supersymmetric Grand Unification

    Full text link
    In warped supersymmetric grand unification, XY gauge particles appear near the TeV scale along with Kaluza-Klein towers of the standard model gauge fields. In spite of this exotic low-energy physics, MSSM gauge coupling unification is preserved and proton decay is naturally suppressed. In this paper we study in detail the low-lying mass spectrum of superparticles and GUT particles in this theory, taking supersymmetry breaking to be localized to the TeV brane. The masses of the MSSM particles, Kaluza-Klein modes, and XY states are all determined by two parameters, one which fixes the strength of the supersymmetry breaking and the other which sets the scale of the infrared brane. A particularly interesting result is that for relatively strong supersymmetry breaking, the XY gauginos and the lowest Kaluza-Klein excitations of the MSSM gauginos may both lie within reach of the LHC, providing the possibility that the underlying unified gauge symmetry and the enhanced N=2 supersymmetry of the theory will both be revealed.Comment: 29 pages, 5 figure

    Effective Field Theory and Unification in AdS Backgrounds

    Full text link
    This work is an extension of our previous work, hep-th/0204160, which showed how to systematically calculate the high energy evolution of gauge couplings in compact AdS_5 backgrounds. We first directly compute the one-loop effects of massive charged scalar fields on the low energy couplings of a gauge theory propagating in the AdS background. It is found that scalar bulk mass scales (which generically are of order the Planck scale) enter only logarithmically in the corrections to the tree-level gauge couplings. As we pointed out previously, we show that the large logarithms that appear in the AdS one-loop calculation can be obtained within the confines of an effective field theory, by running the Planck brane correlator from a high UV matching scale down to the TeV scale. This result exactly reproduces our previous calculation, which was based on AdS/CFT duality. We also calculate the effects of scalar fields satisfying non-trivial boundary conditions (relevant for orbifold breaking of bulk symmetries) on the running of gauge couplings.Comment: LaTeX, 27 pages; minor typos fixed, comments adde

    Systematics of Coupling Flows in AdS Backgrounds

    Get PDF
    We give an effective field theory derivation, based on the running of Planck brane gauge correlators, of the large logarithms that arise in the predictions for low energy gauge couplings in compactified AdS}_5 backgrounds, including the one-loop effects of bulk scalars, fermions, and gauge bosons. In contrast to the case of charged scalars coupled to Abelian gauge fields that has been considered previously in the literature, the one-loop corrections are not dominated by a single 4D Kaluza-Klein mode. Nevertheless, in the case of gauge field loops, the amplitudes can be reorganized into a leading logarithmic contribution that is identical to the running in 4D non-Abelian gauge theory, and a term which is not logarithmically enhanced and is analogous to a two-loop effect in 4D. In a warped GUT model broken by the Higgs mechanism in the bulk,we show that the matching scale that appears in the large logarithms induced by the non-Abelian gauge fields is m_{XY}^2/k where m_{XY} is the bulk mass of the XY bosons and k is the AdS curvature. This is in contrast to the UV scale in the logarithmic contributions of scalars, which is simply the bulk mass m. Our results are summarized in a set of simple rules that can be applied to compute the leading logarithmic predictions for coupling constant relations within a given warped GUT model. We present results for both bulk Higgs and boundary breaking of the GUT gauge group.Comment: 22 pages, LaTeX, 3 figures. Comments and references adde

    Gauge coupling renormalization in orbifold field theories

    Full text link
    We investigate the gauge coupling renormalization in orbifold field theories preserving 4-dimensional N=1 supersymmetry in the framework of 4-dimensional effective supergravity. As a concrete example, we consider the 5-dimensional Super-Yang-Mills theory on a slice of AdS_5. In our approach, one-loop gauge couplings can be determined by the loop-induced axion couplings and the tree level properties of 4-dimensional effective supergravity which are much easier to be computed.Comment: 18 pages, JHEP style; 1-loop corrections to gauge kinetic functions are fully computed, references are adde

    Precision Electroweak Data and Unification of Couplings in Warped Extra Dimensions

    Full text link
    Warped extra dimensions allow a novel way of solving the hierarchy problem, with all fundamental mass parameters of the theory naturally of the order of the Planck scale. The observable value of the Higgs vacuum expectation value is red-shifted, due to the localization of the Higgs field in the extra dimension. It has been recently observed that, when the gauge fields propagate in the bulk, unification of the gauge couplings may be achieved. Moreover, the propagation of fermions in the bulk allows for a simple solution to potentially dangerous proton decay problems. However, bulk gauge fields and fermions pose a phenomenological challenge, since they tend to induce large corrections to the precision electroweak observables. In this article, we study in detail the effect of gauge and fermion fields propagating in the bulk in the presence of gauge brane kinetic terms compatible with gauge coupling unification, and we present ways of obtaining a consistent description of experimental data, while allowing values of the first Kaluza Klein mode masses of the order of a few TeV.Comment: 32 pages, 7 figures. References adde

    Spin and a Running Radius in RS1

    Full text link
    We develop a renormalization group formalism for the compactified Randall-Sundrum scenario wherein the extra-dimensional radius serves as the scaling parameter. Couplings on the hidden brane scale as we move within local effective field theories with varying size of the warped extra dimension. We consider this RG approach applied to U(1) gauge theories and gravity. We use this method to derive a low energy effective theory.Comment: 18 pages, minor changes, references adde

    Opaque Branes in Warped Backgrounds

    Get PDF
    We examine localized kinetic terms for gauge fields which can propagate into compact, warped extra dimensions. We show that these terms can have a relevant impact on the values of the Kaluza-Klein (KK) gauge field masses, wave functions, and couplings to brane and bulk matter. The resulting phenomenological implications are discussed. In particular, we show that the presence of opaque branes, with non-vanishing brane-localized gauge kinetic terms, allow much lower values of the lightest KK mode than in the case of transparent branes. Moreover, we show that if the large discrepancies among the different determinations of the weak mixing angle would be solved in favor of the value obtained from the lepton asymmetries, bulk electroweak gauge fields in warped-extra dimensions may lead to an improvement of the agreement of the fit to the electroweak precision data for a Higgs mass of the order of the weak scale and a mass of the first gauge boson KK excitation most likely within reach of the LHC.Comment: 37 pages, 12 figures, improved analysis of the precision electroweak constraint

    Family Unification on an Orbifold

    Full text link
    We construct a family-unified model on a Z_2xZ_2 orbifold in five dimensions. The model is based on a supersymmetric SU(7) gauge theory. The gauge group is broken by orbifold boundary conditions to a product of grand unified SU(5) and SU(2)xU(1) flavor symmetry. The structure of Yukawa matrices is generated by an interplay between spontaneous breaking of flavor symmetry and geometric factors arising due to field localization in the extra dimension.Comment: 13 page

    Search for Radions at LEP2

    Get PDF
    A new scalar resonance, called the radion, with couplings to fermions and bosons similar to those of the Higgs boson, is predicted in the framework of Randall-Sundrum models, proposed solutions to the hierarchy problem with one extra dimension. An important distinction between the radion and the Higgs boson is that the radion would couple directly to gluon pairs, and in particular its decay products would include a significant fraction of gluon jets. The radion had the same quantum numbers as the Standard Model (SM) Higgs boson, and therefore they can mix, with the resulting mass eigenstates having properties different from those of the SM Higgs boson. Existing searches for the Higgs boson are sensitive to the possible production and decay of radions and Higgs bosons in these models. For the first time, searches for the SM Higgs boson and flavour-independent and decay-mode independent searches for a neutral Higgs boson are used in combination to explore the parameter space of the Randall-Sundrum model. In the dataset recorded by the OPAL experiment at LEP, no evidence for radion or Higgs particle production was observed in any of those searches. The results are used to set limits on the radion and Higgs boson masses.Comment: 18 pages, 6 figures, Submitted to Phys. Lett.
    • …
    corecore