5 research outputs found

    The boron isotope systematics of Icelandic geothermal waters: 1. Meteoric water charged systems

    No full text
    We have measured the boron isotope composition and boron and chloride concentrations of 27 Icelandic geothermal fluids from both high- and low-temperature systems. The ?11B values range from -6.7‰ in the Krafla system, to +25.0‰ in a warm spring from the Southern Lowlands. In addition, we have also determined the ?11B values of basaltic glass from Nesjavellir (-5.3 ± 1.4‰) and travertine from Snaefellsnes (-22 ± 0.5‰). The B isotope and Cl/B systematics of the high-temperature systems are dominated by the composition of the local basalts. The lower temperature systems show evidence for mixing with B and Cl of a marine origin, together with some uptake of B into secondary mineral phases. The data from the Snaefellsnes geothermal system indicate that the fluids have undergone interaction with basalts that have undergone significant low-temperature alteration by seawater

    An ecosystem approach to assess soil quality in organically and conventionally managed farms in Iceland and Austria

    No full text
    Intensive agricultural production can be an important driver for the loss of long-term soil quality. For this reason, the European Critical Zone Observatory (CZO) network adopted four pairs of agricultural CZO sites that differ in their management: conventional or organic. The CZO sites include two pairs of grassland farms in Iceland and two pairs of arable farms in Austria. Conventional fields differed from the organic fields in the use of artificial fertilisers and pesticides. Soils of these eight farms were analysed in terms of their physical, chemical, and biological properties, including soil aggregate size distribution, soil organic matter contents, abundance of soil microbes and soil fauna, and taxonomic diversity of soil microarthropods. In Icelandic grasslands, organically farmed soils had larger mean weight diameters of soil aggregates than the conventional farms, while there were no differences on the Austrian farms. Organic farming did not systematically influence organic matter contents or composition, nor soil carbon and nitrogen contents. Also, soil food web structures, in terms of presence of trophic groups of soil organisms, were highly similar among all farms, indicating a low sensitivity of trophic structure to land use or climate. However, soil organism biomass, especially of bacteria and nematodes, was consistently higher on organic farms than on conventional farms. Within the microarthropods, taxonomic diversity was systematically higher in the organic farms compared to the conventional farms. This difference was found across countries and farm, crop, and soil types. The results do not show systematic differences in physical and chemical properties between organic and conventional farms, but confirm that organic farming can enhance soil biomass and that microarthropod diversity is a sensitive and consistent indicator for land management

    An ecosystem approach to assess soil quality in organically and conventionally managed farms in Iceland and Austria

    No full text
    Intensive agricultural production can be an important driver for the loss of long-term soil quality. For this reason, the European Critical Zone Observatory (CZO) network adopted four pairs of agricultural CZO sites that differ in their management: conventional or organic. The CZO sites include two pairs of grassland farms in Iceland and two pairs of arable farms in Austria. Conventional fields differed from the organic fields in the use of artificial fertilisers and pesticides. Soils of these eight farms were analysed in terms of their physical, chemical, and biological properties, including soil aggregate size distribution, soil organic matter contents, abundance of soil microbes and soil fauna, and taxonomic diversity of soil microarthropods. In Icelandic grasslands, organically farmed soils had larger mean weight diameters of soil aggregates than the conventional farms, while there were no differences on the Austrian farms. Organic farming did not systematically influence organic matter contents or composition, nor soil carbon and nitrogen contents. Also, soil food web structures, in terms of presence of trophic groups of soil organisms, were highly similar among all farms, indicating a low sensitivity of trophic structure to land use or climate. However, soil organism biomass, especially of bacteria and nematodes, was consistently higher on organic farms than on conventional farms. Within the microarthropods, taxonomic diversity was systematically higher in the organic farms compared to the conventional farms. This difference was found across countries and farm, crop, and soil types. The results do not show systematic differences in physical and chemical properties between organic and conventional farms, but confirm that organic farming can enhance soil biomass and that microarthropod diversity is a sensitive and consistent indicator for land management

    Investing in Nature as the true engine of our economy: A 10-point Action Plan for a Circular Bioeconomy of Wellbeing

    No full text
    The 10-Point Action Plan to catalyse a Circular Bioeconomy of Wellbeing is a call for collective and integrated action to global leaders, investors, companies, scientists, governments, nongovernmental and intergovernmental organisations, funding agencies and society at large to put the world on a sustainable path
    corecore