10 research outputs found

    Microstructured reactors on the 5 kW scale for the water gas shift and preferential oxidation reactions using surrogate diesel reformate

    No full text
    5 kWel One-Stage Water Gas Shift (WGS) and Preferential Oxidation (PROx) reactors were designed and evaluated for the clean-up of surrogate diesel reformate. For the WGS reactor, CO conversions of up to 95% were attained using typical surrogate synthetic diesel reformate. The PROx reactor was capable of converting a feed concentration of 1.0 mol% CO to 20 ppm. The two reactors were then integrated for the purposes of reducing the carbon monoxide levels in a reformate exit stream to levels below 100 ppm

    Microstructured reactors on the 5 kW scale for the water gas shift and preferential oxidation reactions using surrogate diesel reformate

    No full text
    5 kWel One-Stage Water Gas Shift (WGS) and Preferential Oxidation (PROx) reactors were designed and evaluated for the clean-up of surrogate diesel reformate. For the WGS reactor, CO conversions of up to 95% were attained using typical surrogate synthetic diesel reformate. The PROx reactor was capable of converting a feed concentration of 1.0 mol% CO to 20 ppm. The two reactors were then integrated for the purposes of reducing the carbon monoxide levels in a reformate exit stream to levels below 100 ppm

    An investigation into the transient behavior of a microreactor system for reforming of diesel fuel in the kw range

    No full text
    A diesel reformer based on microreaction technology was developed for application in an auxiliary power unit (APU) system. The transient characteristics of this reactor for reforming of diesel fuel are reported. Diesel steam reforming was performed at various S/C ratios with load changes ranging from 30 % LL to 80 % LL, i.e., a 1.5 kW to a 4 kW electrical equivalent. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. The reforming was performed at temperatures above 750¿°C and at various S/C ratios, down to a minimum of 3.17. Variation of experimental parameters, such as O/C and S/C ratios, are critical for optimum and efficient operation of the reformer

    Development and evaluation of a microreactor for the reforming of diesel fuel in the kW range

    No full text
    The development and evaluation of a reactor based on microchannel technology for the reforming of diesel fuel is reported. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. 38 h of diesel reforming was performed at temperatures above 750 °C and at various S/C ratios, down to a minimum of 3.17, up to an electrical power equivalent of 5 kW. Over 98% total diesel conversion was observed at all times over the testing period. Variation of experimental parameters such as O/C and S/C ratios are critical for optimum operation of the reformer. © 2009 International Association for Hydrogen Energy

    Development and evaluation of a microreactor for the reforming of diesel fuel in the kW range

    No full text
    The development and evaluation of a reactor based on microchannel technology for the reforming of diesel fuel is reported. The reactor itself was based on an integrated reformer/burner heat exchange reactor concept. 38 h of diesel reforming was performed at temperatures above 750 °C and at various S/C ratios, down to a minimum of 3.17, up to an electrical power equivalent of 5 kW. Over 98% total diesel conversion was observed at all times over the testing period. Variation of experimental parameters such as O/C and S/C ratios are critical for optimum operation of the reformer. © 2009 International Association for Hydrogen Energy

    Investigation on the combined operation of water gas shift and preferential oxidation reactor system on the kW scale

    No full text
    A 5 kWel water gas shift reactor was integrated with a 5 kWel preferential oxidation reactor for the purposes of reducing the carbon monoxide levels in a reformate exit stream to levels below 100 ppm. The integrated system worked best at partial load with CO concentrations being reduced to 40 ppm at 60% load level and S/C = 3.2

    Investigation on the combined operation of water gas shift and preferential oxidation reactor system on the kW scale

    No full text
    A 5 kWel water gas shift reactor was integrated with a 5 kWel preferential oxidation reactor for the purposes of reducing the carbon monoxide levels in a reformate exit stream to levels below 100 ppm. The integrated system worked best at partial load with CO concentrations being reduced to 40 ppm at 60% load level and S/C = 3.2

    De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias

    No full text
    Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders
    corecore