726 research outputs found

    An irregular current injection islanding detection method based on an improved impedance measurement scheme

    Get PDF
    One class of islanding detection methods, known as impedance measurement-based methods and voltage change monitoring-based methods, are implemented through injecting irregular currents into the network, for which reason they are defined in this paper as irregular current injection methods. This paper indicates that such methods may be affected by distributed generation (DG) unit cut-in events. Although the network impedance change can still be used as a judgment basis for islanding detection, the general impedance measurement scheme cannot separate island events from DG unit cut-in events in multi-DG operation. In view of this, this paper proposes a new islanding detection method based on an improved impedance measurement scheme, i.e., dynamic impedance measurement, which will not be affected by DG unit cut-in events and can further assist some other equipment in islanding detection. The simulations and experiments verify the stated advantages of the new islanding detection method

    Problems in the classic frequency shift islanding detection methods applied to energy storage converters and a coping strategy

    Get PDF
    This paper first derives a usable formula based on the parallel R, L, C load and the conclusions from frequency shift islanding detection methods in current literature: the angle by which the total output current of the distributed resources (DR) units leads the point of common coupling (PCC) voltage must be conducted to have the same shifting direction as the load admittance angle during the variation of the frequency. On the basis of the formula and multi-DR operation, the scenarios in which the classic frequency shift methods are applied to energy storage converters are analyzed. The results indicate that the setting of the angle by which the energy storage converter current leads the PCC voltage may need to be modified when running state changes. It results in the problems that the classic methods are not applicable for non-UPF (unity power factor) control and have to distinguish between generation mode and consumption mode for UPF control. On account of the problems, a coping strategy, i.e. an improved method, is proposed. The analyses indicate that the improved method is applicable in every state. The last simulations and experiments confirm the preceding conclusions

    Transcribing Latin Manuscripts in Respect to Linguistics

    Get PDF
    Current text detection software, although can transcribe modern languages with high accuracy, has flaws detecting texts and transcribing original Latin manuscripts sufficiently. This paper proposes a general approach for transcribing Latin manuscripts in respect to linguistics and develops a system to transcribe Latin manuscripts containing intricate abbreviations, which combines basic object detection algorithms with linguistics. We used methods from image processing and made changes based on the characteristics of Latin.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Scaling Distributions of Quarks, Mesons and Proton for all pTp_T, Energy and Centrality

    Get PDF
    We present the evidences for the existence of a universal scaling behavior of the production of π0\pi^0 at all transverse momenta in heavy-ion collisions at all centralities and all collision energies. The corresponding scaling behavior of the quarks is then derived just before the quarks recombine with antiquarks to form the pions. The degradation effect of the dense medium on the quark pTp_T is derived from the scaling distribution. In the recombination model it is then possible to calculate the pTp_T distributions of the produced proton and kaon, which are scaling also. Experimentally verifiable predictions are made. Implications of the existence of the scaling behavior are discussed.Comment: 10 pages in RevTeX, including 14 figures in eps file

    Ligation of lymphocyte function-associated antigen-1 on monocytes decreases very late antigen-4-mediated adhesion through a reactive oxygen species-dependent pathway

    Get PDF
    Monocyte-endothelial adhesion plays an important role in monocyte trafficking and hence is important for immune responses and pathogenesis of inflammatory diseases including atherosclerosis. The cross-talk between different integrins on monocytes may be crucial for a coordinated regulation of the cellular adhesion during the complex process of transendothelial migration. By using monoclonal antibodies and recombinant intercellular adhesion molecule 1 (ICAM-1) to engage lymphocyte function-associated antigen 1 (LFA-1) on monocytic cells, we found that the cellular adhesion to vascular cell adhesion molecule 1 (VCAM-1) mediated by very late antigen 4 (VLA-4) was suppressed after this treatment and the suppression depended on the presence of reactive oxygen species (ROSs). Inhibition of production of RoSs through the use of inhibitor of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, but not inhibitors of mitochondrial electron transport chain or xanthine oxidase, revealed that this suppression on VLA-4-mediated cellular binding was mediated by Ross produced by phagocyte NADPH oxidase. Activation of phosphoinositol-3 kinase and Akt appears to mediate this NADPH oxidase activation through p47 phox phosphorylation and Rac-1 activation. Our results provide a novel pathway in which Ross play a critical role in integrin cross-talk in monocytes. This signaling pathway may be important for cellular transition from firm arrest to diapedesis during monocyte trafficking. (C) 2004 by The American Society of Hematology

    On the construction of a geometric invariant measuring the deviation from Kerr data

    Full text link
    This article contains a detailed and rigorous proof of the construction of a geometric invariant for initial data sets for the Einstein vacuum field equations. This geometric invariant vanishes if and only if the initial data set corresponds to data for the Kerr spacetime, and thus, it characterises this type of data. The construction presented is valid for boosted and non-boosted initial data sets which are, in a sense, asymptotically Schwarzschildean. As a preliminary step to the construction of the geometric invariant, an analysis of a characterisation of the Kerr spacetime in terms of Killing spinors is carried out. A space spinor split of the (spacetime) Killing spinor equation is performed, to obtain a set of three conditions ensuring the existence of a Killing spinor of the development of the initial data set. In order to construct the geometric invariant, we introduce the notion of approximate Killing spinors. These spinors are symmetric valence 2 spinors intrinsic to the initial hypersurface and satisfy a certain second order elliptic equation ---the approximate Killing spinor equation. This equation arises as the Euler-Lagrange equation of a non-negative integral functional. This functional constitutes part of our geometric invariant ---however, the whole functional does not come from a variational principle. The asymptotic behaviour of solutions to the approximate Killing spinor equation is studied and an existence theorem is presented.Comment: 36 pages. Updated references. Technical details correcte

    Preparation of chalcogenide materials for next generation optoelectronic devices

    No full text
    Chalcogenide materials are finding increasing interest as an active material in next generation optical and electronic devices. There wide range of properties, ranging from photosensitivity, ability to host rare earth ions, electrical conductivity, phase change, exceptional optical non-linearities to name only a few are fueling this interest. Moreover, the ability to synthesize these materials in numerous forms as diverse as 2D monolayers, microspheres, optical fibres, nanowires, thin films as well as bulk glass ingots of over a kilogram in size ensures their application space is vast. We began preparation of chalcogenides, largely based on sulphides, in 1992 and since then have built up an extensive capability for their purification, synthesis and fabrication in various forms. A key aspect of this facility is the ability to process in a flowing atmosphere of hydrogen sulphide which provided the capability of synthesis from elemental, oxide or halide precursors, processing through various chemical vapour deposition reactions as well as post purification.In this talk we describe recent additions to the range of materials we synthesize highlighting transition metal di-chalcogenides for electronic applications, an example of which is shown below, crystalline semiconductors for solar cell applications, ion implanted thin films which provide carrier type reversal, low power phase change memory devices, switchable metamaterial devices as well as traditional chalcogenides glass and optical fibre

    Predictors of compliance with higher dose omega-3 fatty acid supplementation during pregnancy and implications for the risk of prematurity: exploratory analysis of the ORIP randomised trial

    Get PDF
    Background: Intention-to-treat analyses of the Omega‐3 to Reduce the Incidence of Prematurity (ORIP) trial found that omega-3 (n-3) fatty acid supplementation reduces the risk of prematurity in the subgroup of women with a singleton pregnancy and low n-3 status early in pregnancy, but not overall. However, results may have been influenced by less-than-optimal compliance. Objectives: To identify predictors of compliance with n-3 supplementation and determine treatment effects among compliers. Design: Exploratory analyses of a multicentre-blinded randomised trial. Setting: 6 tertiary care centres in Australia. Participants: 5328 singleton pregnancies. Interventions: Daily capsules containing 900 mg n-3 long-chain polyunsaturated fatty acids or vegetable oil, consumed from before 20 weeks gestation until 34 weeks gestation. Outcome measures: Early preterm (<34 weeks gestation) and preterm birth (<37 weeks gestation). Women were considered compliant if they reported missing less than a third of their allocated capsules in the previous week during a mid-pregnancy appointment. Results: Among 2654 singleton pregnancies in the n-3 intervention group, 1727 (65%) were deemed compliant with supplementation. Maternal characteristics associated with compliance included age, years of full-time education, consuming alcohol but not smoking in the 3 months leading up to pregnancy, fewer previous births and taking dietary supplements at enrolment. Based on complier average causal effects, n-3 supplementation reduced the risk of preterm birth in compliers (relative risk=0.76; 95% CI 0.60 to 0.97), but not early preterm birth (relative risk=0.80; 95% CI 0.44 to 1.46). Consistent with intention-to-treat analyses, the lack of an overall effect on early preterm birth in compliers appeared to be due to beneficial effects in women with low n-3 status at enrolment but not women with replete status. Conclusions: Results in compliers were similar to those from intention-to-treat analyses, suggesting that non-compliance was not a major factor in explaining outcomes from the ORIP trial. Trial registration number: ACTRN12613001142729.Thomas R Sullivan, Lisa N Yelland, Robert A Gibson, Sagar K Thakkar, Fang Huang, Karen P Best, Surabhi Devaraj, Irma Silva Zolezzi, Maria Makride

    D-Brane Propagation in Two-Dimensional Black Hole Geometries

    Full text link
    We study propagation of D0-brane in two-dimensional Lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the Lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the Euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the Lorentzian D0-brane is formally constructible via Wick rotation from that of the Euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k=1 (k=3 for the bosonic case), exposing the `string - black hole transition' therein.Comment: 51 pages, 5 figures, v2: referece added, note added replying the comment made in hep-th/060206
    • 

    corecore