
Transcribing Latin Manuscripts in Respect to
Linguistics

Manqing Feng
Thayer Academy

Braintree, US

Guoxin Huang
Department of Computer Science

University of Arizona
Tucson, US

Yang Liu
Computer Science &Artifical

Intelligence Lab
MIT

Cambridge, US

Yajun Fang
Computer Science &Artifical

Intelligence Lab
MIT

Cambridge, US

Berthold K.P. Horn
Computer Science

&Artifical Intelligence Lab
MIT

Cambridge, US

Abstract—Current text detection software, although can
transcribe modern languages with high accuracy, has flaws
detecting texts and transcribing original Latin manuscripts
sufficiently. This paper proposes a general approach for
transcribing Latin manuscripts in respect to linguistics and
develops a system to transcribe Latin manuscripts containing
intricate abbreviations, which combines basic object detection
algorithms with linguistics. We used methods from image
processing and made changes based on the characteristics of
Latin.

 Keywords—transcription, text detection, linguistics,
projection, sliding windows

I. INTRODUCTION

Latin manuscripts have always been favored by collectors
and libraries. Famous manuscripts such as Virgil’s Aeneid are
the pride of celebrated libraries. In order to preserve the
manuscripts in their best states, libraries would scan the
manuscripts into digital version so that people could view the
manuscripts online and prevent tactile damages. Latin
manuscripts record poems and fold talks that allow modern
scholars to comprehend Roman life. However, being able to
appreciate Latin manuscripts has been a luxury for most Latin
students because of the difficulties in recognizing handwritten
Latin manuscripts. Furthermore, because the writing customs
for Latin are significantly different from modern language,
current text detection algorithms cannot efficiently transcribe
Latin manuscript. For the purpose of experiment, we are using
images from College of the Holy Cross’s database. [1]

II. STATE OF THE ART

The current text detection technologies can effectively
transcribe modern languages with an accuracy of 98 percent.
Furthermore, software such as Adobe Acrobat claims to be

able to transcribe Latin. However, because of the specialness
of Latin manuscripts, these algorithms still fail to transcribe
the aboriginal text. There are three main problems faced by
current text detection technologies: the presence of images in
manuscripts, authors’ personal preference for abbreviations,
and the combinations and variations of ancient hand-written
letter. Here’s a review of the problems faced by algorithms:[2]

A. Failing to Detect Text With the Presence of Images
Most current text detection technologies require the

inputs to be manually managed beforehand: with images and
most noises cropped and fixed, only text can go in as inputs.
Otherwise, the software would mistake drawing strokes as
terrible hand writings. Fig. 1 is an example of the inputs that
most text detection programs are not able to extract texts
accurately.

Fig. 1. An example of a recto page of a Latin manuscript with the presence
of images. This would be an example that current text detection algorithms
have trouble with.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Arizona

https://core.ac.uk/display/225561044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. Inability of Recognizing Abbreviations
Different authors have different customs for hand

writings. Although the authors of the Latin manuscripts were
all educated citizens and had similar hand writings, they had
their personal systems of utilizing abbreviations, as in Fig. 2.
These personal systems require the software to learn the
systems every time it tries to transcribe a piece of text from
the manuscripts. In other words, the laborious process of
learning has to be repeated by the algorithms each time it was
dealing with the inputs from a different author.

Fig. 2. In the second word of the 4th line of this example, qm (with a long
mark) is an abbreviation for “quoniam” in Latin meaning “since.”

C. Mistaking letters and the combinations of letters
Fig. 3 is a short list of common mistaken letters and

mistaken combinations of letters.

Fig. 3. A short list of common mistaken letters and combinations

III. THE PROPOSED SOLUTION

These are not only the obstacles faced by Latin
transcription but also other ancient language recognitions.
Based on linguistics, a word is consisted of one root for its
meaning and multiple affixes indicating its usage, as in (1).
The dictionaries most text recognition algorithms used cannot
check for affixes and roots separately. If an algorithm aims
for accuracy it would lose much speed checking each output
and vice versa. Furthermore, because of the peculiar rules for
transcribing Latin manuscripts that all abbreviation should be
expanded, a special dictionary has to be imported [3]. As a
result, linking linguistics with text detection would be an
indispensable step to improve contemporary algorithms.

Word = (affix)^x(root)(affix)^x (1)

IV. MEDTHODS

Because the methods used for image segmentation only
operate on a 2-dimensional map, all inputs were first
converted from RGB to gray scale. Then for the purpose of
projection, a threshold was set to help further distinguish the
blank spaces and the letter strokes.

Fig. 4. A thresholding method from CV2 was used for this purpose.

A. Projection and Image Segmentation

A horizontal projection, as in Fig. 5, was done to the
monotonous input to segment the text image into lines.

Fig. 5. A horizonal projection of one of the inputs.

Then, a vertical projection, as in Fig. 6, was used to find
the possible cutting points that would cut the lines into words.

Fig. 6. A vertical projection of the segmented lines. The valleys in this plot
represent the possible cutting points.

One of the main problems for image segmentation is that
the heads and tails of a letter would cover the space between
words. In other words, if we just simply use projection once
for segmentation, the result would contain unseparated words
like Fig. 7.

Fig. 7. Segmented words based on vertical projection. This output contains
three unsegmented words “catulus,” “leonis,” and “iuda.” Because the letter
“s” in Latin has its head extended into the next character, the vertical
projection fails to cut the lines into words accurately.

“i n” for “i u”
“ e ” for “ c ”
“ b ” for “ h ”
“ o ” for “ u ”
“ li ” for “ u ”
“ l ” for “ t ”
“ t “ for “ f ”
“ . ” for “ , ”
“ n ” for “ u ”
(dashes)
(non-letter)
Etc.

_ ,img = cv2.threshold(img,175,255,cv2.THRESH_BINARY_INV)

However, by further cutting the words based on its two
peaks in the projection as in Fig. 8, the problem of the heads
and the tails of the words covering blank spaces between
words could be solved by separating the image into two parts
based on the peaks.

Fig. 8. A horizontal projection of Fig. 7. The two peaks are obvious.

The cutting line is represented by the red line shown in
Fig. 9. The vertical projections are used to separate the words
from each other.

Fig. 9. The red line indicates the second cutting line that help segment words
from the line input.

The cutting points are determined by the starting positions
and the ending positions of valleys based on the vertical
projection as in Fig. 10. The cutting points are used for
segmenting both the peaks and the valleys so that complete
words would be produced as the results. The segments from
corresponding peaks and valleys are stacked back together in
the end.[4]

Fig. 10. The vertical projection of Fig. 7 after second cutting.

B. Sliding window object detection
With all the words saved in one folder, we can use 2-

dimensional sliding window searching by first building an
image pyramid. Then a searching window loops through each
layer of the pyramid [5]. The window size is defined by
sample letters from a folder. An example is shown in Fig. 11.
With the contents in the searching windows and the sample
letter having been compared by using sum of squared
difference (SSD), a histogram is produced to estimate the
possibility of the letter as in Fig. 12. In this example, “n”
template is used for finding the existence of “n.” The result is
accurate because based on the histogram, “n” has the lowest
SSD. This method deals with the inability of identifying
abbreviations and ambiguous combinations of letters
effectively.

Fig. 11. A sliding window is running through the word “nium.”

Fig. 11. The evaluation histogram of Fig. 11. According to the histogram,
the most possible first letters for Figure 10 are “n,” “i,” and “[period].”

C. Evaluating and building the system
There are four main factors that would determine the

determination of a letter: the shape of the letter, the position
of the letter, the possible word containing the letter, noises
around the letter. Each of the four factors would contribute to
the output by different degrees. The result bid fair to be
displayed as a possibility. One input could have multiple
possible output. The one with the highest possibility would
not be necessarily correct. Therefore, all possible output
should be displayed to the user for investigation.

V. MORPHOSYNTACTIC ANALYSIS OF POSSIBLE
INTERPRETATIONS

The previous sections illustrate the approaches of
identifying isolated letters, wherein the ligatures and alternate
forms existing in the manuscript could prove to be great
obstacles in correctly interpreting the passage. Further
analysis needs to be implemented to lower the number of
possible interpretations.

The Latin language has not seen much change since the
last works in Renaissance Latin. In our situation with the
manuscripts, the Latin language used is even more dated. It is
technically possible to store every single word in a language
that has not seen much change in the last few centuries.

However, as a fusional language, Latin utilizes inflection
heavily. Whereas in English relationships between words are
described extensively with helper words such as prepositions,
Latin relies on those words much less than English, using
inflected endings to convey the relationship.

Depending on the (syntactic) role of each word in the
sentence, inflected words can take on anywhere from 12
forms (nouns without attested locative case) to around 100
forms (non-deponent, non-defective irregular verbs like
“video, videre, visi, visum”. Storing every form of every
lemma in Latin for later interpretations to be checked against
is both space consuming and time consuming, from both
labor and complexity perspectives.

However, as demonstrated in the gloss above, it is
possible to segment Latin words into one or more
morphemes, each containing one or more meanings. A list of
all possible morphemes can be stored as a triplet
where is the text, is the category (lexical class) and is
the position (stem or affix; if affix, prefix or suffix). By
adding another slot specifying the morphological role of the
morpheme, we can further restrict the combination of
morphemes, e.g. if we have the following morphemes:

• (vide, verb, stem, (+IND, +PRS))
• (visi, verb, stem, (+IND, PRF))
• (t, verb, suffix, (3SG))
• (, verb, suffix, (1SG, +PRF))
• (o, verb, suffix, (1SG, +IND, +PRS))

we can disqualify words such as *vide, *visio, *ovide, *tvisi,
and *visiot.

By analyzing the preliminary results obtained from image
processing, it is possible to reduce the number of potential
valid interpretations.

VI. CONCLUSION & FUTURE WORK

With the help of the projection, 96.667% of the words were
able to be segmented out accurately as independent words. If
common abbreviations were treated as one letter in the
process of evaluating each letter, the segmentation success
rate would have been improved significantly. Using image
pyramid and sliding windows has been successful in finding
letters so far as well. However, the process of creating a
template folder takes lots of human efforts: it requires
specialists to select letters as templates by hand. Fortunately,
because most Latin transcriptions have clear and similar
handwriting, we can use existing template folders that are
similar to the calligraphy of the input.

In order to get more accurate results for the evaluated
letters, we plan to utilize Convoluted Neural Network (CNN)
with manual selected data.

Future work in this area includes automatically separating
texts and images from an input through identification of the
shapes in an input. In other words, because texts in Latin

manuscripts often come in blocks, or rectangular shape, by
segmenting the input based on shapes we can extract most of
the texts. Regard for modern technologies’ inability of
recognizing abbreviations and confusing combinations of
letters, sliding windows combining with CNN would solve
the problem.

ACKNOWLEDGMENT
Feng Manqing thanks Ms. Callie Schneider and College of

the Holy Cross.

REFERENCE

Holy cross manuscript hackathon. (2018, February 24).
Retrieved November 22, 2018, from https://hcmid.github.io/ms-
hackathon-2018/thumbs/
Hawk, B. W. (2015, April). OCR and medieval
manuscripts: Establishing a baseline.
Treharne, E. (n.d.). Making a transcript of a manuscript text.
A.R.Rumble’s Teaching Materials, I(IV). Retrieved from

Ghaleb, H., Nagabhushan, P., & Pal, U. (2017). Segmentation of
offline handwritten Arabic text. 2017 1st International Workshop on
Arabic Script Analysis and Recognition (ASAR).
Rosebrock, A. (2015, March 23). Sliding windows for object detection
with python and opencv. Retrieved November 22, 2018, from
pyimagesearch website:

