13 research outputs found

    Oval cell-mediated liver regeneration: Role of cytokines and growth factors

    No full text
    In experimental models, which induce liver damage and simultaneously block hepatocyte proliferation, the recruitment of a hepatic progenitor cell population comprised of oval cells is invariably observed. There is a substantial body of evidence to suggest that oval cells are involved in liver regeneration, as they differentiate into hepatocytes and biliary cells. Recently, bone marrow cells were shown to be a source of a stem cells with the capacity to repopulate the liver. Presently, the relationship between bone marrow cells and oval cells is unclear. Investigations will be greatly assisted by the availability of in vitro models based on a knowledge of cytokines that affect oval cells. While the cytokines, which regulate the different hematopoietic lineages, are well characterized, there is relatively little information regarding those that influence oval cells. This review outlines recent developments in the field of oval cell research and focuses on cytokines and growth factors that have been implicated in regulating oval cell proliferation and differentiation

    Hepatic expression of the tumor necrosis factor family member lymphotoxin-beta is regulated by interleukin (IL)-6 and IL-1beta: transcriptional control mechanisms in oval cells and hepatoma cell lines

    No full text
    Background: Lymphotoxin-β (LT-β) plays an important role in inflammation and its promoter contains a functional nuclear factor-κB (NF-κB) element, rendering it a likely target of pro-inflammatory cytokines. Inflammatory cytokines play a central role in liver regeneration resulting from acute or chronic liver injury, with interleukin (IL)-6 signaling essential for liver regeneration induced by partial hepatectomy. In hepatic oval cells observed following chronic liver injury, LT-β levels are upregulated, suggesting a link between LT-β and liver regeneration. Results: The expression of LT-β in hepatic oval cell and hepatocellular carcinoma cell lines was further investigated, along with its responsiveness to IL-6 and IL-1β. Key regulatory cis-acting elements of the LT-β promoter that mediate IL-6 responsiveness (Sp/BKLF, Ets, NF-κB and Egr-1/Sp1) and IL-1β responsiveness (NF-κB and Ets) of hepatic LT-β expression were identified. The novel binding of basic Kruppel-like factor (BKLF) proteins to an apparent composite Sp/BKLF site of the LT-β promoter was shown to mediate IL-6 responsiveness. Binding of NF-κB p65/p50 heterodimers and Ets-related transcription factors to their respective sites mediates responsiveness to IL-1β. Conclusion: The identification of IL-6 and IL-1β as activators of LT-β supports their involvement in LT-β signaling in liver regeneration associated with chronic liver damage

    Optimisation of 2-(N-phenyl carboxamide) triazolopyrimidine antimalarials with moderate to slow acting erythrocytic stage activity

    No full text
    Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.Brodie L. Bailey, William Nguyen, Anna Ngo, Christopher D. Goodman, Maria R. Gancheva, Paola Favuzza, Laura M. Sanz, Francisco-Javier Gamo, Kym N. Lowes, Geoffrey I. McFadden, Danny W. Wilson, Benoît Laleu, Stephen Brand, Paul F. Jackson, Alan F. Cowman, Brad E. Sleeb

    Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity

    No full text
    Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.Trent D. Ashton, Anna Ngo, Paola Favuzza, Hayley E. Bullen, Maria R. Gancheva, Ornella Romeo, Molly Parkyn Schneider, Nghi Nguyen, Ryan W.J. Steel, Sandra Duffy, Kym N. Lowes, Helene Jousset Sabroux, Vicky M. Avery, Justin A. Boddey, Danny W. Wilson, Alan F. Cowman, Paul R. Gilson, Brad E. Sleeb

    Property activity refinement of 2-anilino 4-amino substituted quinazolines as antimalarials with fast acting asexual parasite activity

    No full text
    Malaria is a devastating disease caused by Plasmodium parasites. Emerging resistance against current antimalarial therapeutics has engendered the need to develop antimalarials with novel structural classes. We recently described the identification and initial optimization of the 2-anilino quinazoline antimalarial class. Here, we refine the physicochemical properties of this antimalarial class with the aim to improve aqueous solubility and metabolism and to reduce adverse promiscuity. We show the physicochemical properties of this class are intricately balanced with asexual parasite activity and human cell cytotoxicity. Structural modifications we have implemented improved LipE, aqueous solubility and in vitro metabolism while preserving fast acting P. falciparum asexual stage activity. The lead compounds demonstrated equipotent activity against P. knowlesi parasites and were not predisposed to resistance mechanisms of clinically used antimalarials. The optimized compounds exhibited modest activity against early-stage gametocytes, but no activity against pre-erythrocytic liver parasites. Confoundingly, the refined physicochemical properties installed in the compounds did not engender improved oral efficacy in a P. berghei mouse model of malaria compared to earlier studies on the 2-anilino quinazoline class. This study provides the framework for further development of this antimalarial class.Trent D. Ashton, Anna Ngo, Paola Favuzza, Hayley E. Bullen, Maria R. Gancheva, Ornella Romeo, Molly Parkyn Schneider, Nghi Nguyen, Ryan W.J. Steel, Sandra Duffy, Kym N. Lowes, Helene Jousset Sabroux, Vicky M. Avery, Justin A. Boddey, Danny W. Wilson, Alan F. Cowman, Paul R. Gilson, Brad E. Sleeb

    A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis

    No full text
    Activating the intrinsic apoptosis pathway with small molecules is now a clinically validated approach to cancer therapy. In contrast, blocking apoptosis to prevent the death of healthy cells in disease settings has not been achieved. Caspases have been favored, but they act too late in apoptosis to provide long-term protection. The critical step in committing a cell to death is activation of BAK or BAX, pro-death BCL-2 proteins mediating mitochondrial damage. Apoptosis cannot proceed in their absence. Here we show that WEHI-9625, a novel tricyclic sulfone small molecule, binds to VDAC2 and promotes its ability to inhibit apoptosis driven by mouse BAK. In contrast to caspase inhibitors, WEHI-9625 blocks apoptosis before mitochondrial damage, preserving cellular function and long-term clonogenic potential. Our findings expand on the key role of VDAC2 in regulating apoptosis and demonstrate that blocking apoptosis at an early stage is both advantageous and pharmacologically tractable.Mark F. van Delft, Stephane Chappaz, Yelena Khakham, Chinh T. Bui, Marlyse A. Debrincat, Kym N. Lowes ... Benjamin T. Kile ... et al

    Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2

    No full text
    The SARS-CoV-2 coronavirus encodes an essential papain-like protease domain as part of its non-structural protein (nsp)-3, namely SARS2 PLpro, that cleaves the viral polyprotein, but also removes ubiquitin-like ISG15 protein modifications as well as, with lower activity, Lys48-linked polyubiquitin. Structures of PLpro bound to ubiquitin and ISG15 reveal that the S1 ubiquitin-binding site is responsible for high ISG15 activity, while the S2 binding site provides Lys48 chain specificity and cleavage efficiency. To identify PLpro inhibitors in a repurposing approach, screening of 3,727 unique approved drugs and clinical compounds against SARS2 PLpro identified no compounds that inhibited PLpro consistently or that could be validated in counterscreens. More promisingly, non-covalent small molecule SARS PLpro inhibitors also target SARS2 PLpro, prevent self-processing of nsp3 in cells and display high potency and excellent antiviral activity in a SARS-CoV-2 infection model.Chemical Immunolog

    ag) Isolation and characterization of hepatic stem cells, or "oval cells," from rat livers.

    No full text
    The pace of research on the potential therapeutic uses of liver stem cells or "oval cells" has accelerated significantly in recent years. Concurrent advancements in techniques for the isolation and characterization of these cells have helped fuel this research. Several models now exist for the induction of oval cell proliferation in rodents. Protocols for the isolation and culture of these cells have evolved to the point that they may be set up in any laboratory equipped for cell culture. The advent of magnetic cell sorting has eliminated reliance on expensive flow cytometric sorting equipment to generate highly enriched populations of oval cells. Our laboratory has had much success in using the oval cell surface marker Thy-1 in combination with magnetic sorting to produce material suitable for testing the influence of a myriad of chemical signaling molecules on the oval cell phenotype. This chapter will describe our basic strategy for oval cell induction and isolation. Additionally, two in vitro procedures are described which the reader may find useful in the early stages of developing an oval cell research project

    Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats*

    No full text
    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200~250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats
    corecore