16 research outputs found

    Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration

    No full text
    Advanced therapies combating acute and chronic skin wounds are likely to be brought about using our knowledge of regenerative medicine coupled with appropriately tissue-engineered skin substitutes. At the present time, there are no models of an artificial skin that completely replicate normal uninjured skin. Natural biopolymers such as collagen and fibronectin have been investigated as potential sources of biomaterial to which cells can attach. The first generation of degradable polymers used in tissue engineering were adapted from other surgical uses and have drawbacks in terms of mechanical and degradation properties. This has led to the development of synthetic degradable gels primarily as a way to deliver cells and/or molecules in situ, the so-called smart matrix technology. Tissue or organ repair is usually accompanied by fibrotic reactions that result in the production of a scar. Certain mammalian tissues, however, have a capacity for complete regeneration without scarring; good examples include embryonic or foetal skin and the ear of the MRL/MpJ mouse. Investigations of these model systems reveal that in order to achieve such complete regeneration, the inflammatory response is altered such that the extent of fibrosis and scarring is diminished. From studies on the limited examples of mammalian regeneration, it may also be possible to exploit such models to further clarify the regenerative process. The challenge is to identify the factors and cytokines expressed during regeneration and incorporate them to create a smart matrix for use in a skin equivalent. Recent advances in the use of DNA microarray and proteomic technology are likely to aid the identification of such molecules. This, coupled with recent advances in non-viral gene delivery and stem cell technologies, may also contribute to novel approaches that would generate a skin replacement whose materials technology was based not only upon intelligent design, but also upon the molecules involved in the process of regeneration

    Rheotaxis performance increases with group size in a coupled phase model with sensory noise

    No full text
    Many fish exhibit rheotaxis, a behavior in which fish orient themselves relative to flow. Rheotaxis confers many benefits, including energetic cost savings and interception of drifting prey. Despite the fact that most species of fish school during at least some portion of their life, little is known about the importance of rheotactic behavior to schooling fish and, conversely, how the presence of nearby conspecifics affects rheotactic behavior. Understanding how rheotaxis is modified by social factors is thus of ecological importance. Here we present a mathematical model in the form of an all-to-all, coupled-oscillator framework over the non-Euclidean space of fish orientations to model group rheotactic behavior. Individuals in the model measure the orientation of their neighbors and the flow direction relative to their own orientation. These measures are corrupted by sensory noise. We study the effect of sensory noise and group size on internal (i.e., within the school) and external (i.e., with the flow) disagreement in orientation. We find that under noisy environmental conditions, increased group size improves rheotaxis. Results of this study have implications for understanding animal behavior, as well as for potential applications in bio-inspired engineering

    Researching governmentalities through ethnography: The case of reforms and programs for single parents

    No full text
    In this article I argue that the spaces of freedom and constraint that personalized planning programs targeted at Australian single parents open up and close down are distinctly different when viewed from a top-down perspective of governmental rationalities as compared to a bottom-up perspective, or what Foucault referred to as the ‘witches’ brew' of actual practices. Around 90% of single parents with dependent children in Australia are single mothers, and around 80% of these single mothers receive single rate Parenting Payment. Changes to this payment (and its precursor, Sole Parent Pension) over the last 25 years have recognized this gendered composition by focusing on issues of mothering and the intensive activities of care that continue to be carried out most commonly by mothers. While the existing literature argues that the 2005 Welfare to Work package sharply broke with this practice by not focusing on gender and the unique features of mothers' life courses, I find that these considerations have remained a key part of the ‘witches’ brew' of actual practices. Given this finding, a key argument is that studies of governmentalities which combine sociologies of actual practices together with studies of official governmental rationalities can make important critical contributions to understanding the heterogeneous logics and practices through which welfare reform policies occur

    Recent achievements in facilitated transport membranes for separation processes

    No full text
    Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes
    corecore