8 research outputs found

    Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields

    Full text link
    The dephasing time of disordered two-dimensional electron gas in a modulated magnetic field is studied. It is shown that in the weak inhomogeneity limit, the dephasing rate is proportional to the field amplitude, while in strong inhomogeneity limit the dependence is quadratic. It is demonstrated that the origin of the dependence of dephasing time on field amplitude lies in the nature of corresponding single-particle motion. A semiclassical Monte Carlo algorithm is developed to study the dephasing time, which is of qualitative nature but efficient in uncovering the dependence of dephasing time on field amplitude for arbitrarily complicated magnetic-field modulation. Computer simulations support analytical results. The crossover from linear to quadratic dependence is then generalized to the situation with magnetic field modulated periodically in one direction with zero mean, and it is argued that this crossover can be expected for a large class of modulated magnetic fields.Comment: 8 pages, 2 figure

    Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida

    Get PDF
    Background The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure – the syncytium – which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. Results The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. Conclusion This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process

    Effectiveness of Biologic Factors in Shoulder Disorders

    No full text
    corecore