8 research outputs found

    Mass-losing accretion discs around supermassive black holes

    Full text link
    We study the effects of outflow/wind on the gravitational stability of accretion discs around supermassive black holes using a set of analytical steady-state solutions. Mass-loss rate by the outflow from the disc is assumed to be a power-law of the radial distance and the amount of the energy and the angular momentum which are carried away by the wind are parameterized phenomenologically. We show that the mass of the first clumps at the self-gravitating radius linearly decreases with the total mass-loss rate of the outflow. Except for the case of small viscosity and high accretion rate, generally, the self-gravitating radius increases as the amount of mass-loss by the outflow increases. Our solutions show that as more angular momentum is lost by the outflow, then reduction to the mass of the first clumps is more significant.Comment: Accepted for publication in Astrophysics & Space Scienc

    The remarkable outburst of the highly-evolved post period-minimum dwarf nova SSS J122221.7−311525

    Get PDF
    We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7−311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag d−1, and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B − I ≃ 1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess â‰Č0.8 per cent, indicating a very low mass ratio q â‰Č 0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a near-main-sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7−311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim

    The remarkable outburst of the highly evolved post-period-minimum dwarf nova SSS J122221.7−311525⋆

    No full text
    We report extensive 3-yr multiwavelength observations of the WZ Sge-type dwarf nova SSS J122221.7−311525 during its unusual double superoutburst, the following decline and in quiescence. The second segment of the superoutburst had a long duration of 33 d and a very gentle decline with a rate of 0.02 mag d−1, and it displayed an extended post-outburst decline lasting at least 500 d. Simultaneously with the start of the rapid fading from the superoutburst plateau, the system showed the appearance of a strong near-infrared excess resulting in very red colours, which reached extreme values (B − I ≃ 1.4) about 20 d later. The colours then became bluer again, but it took at least 250 d to acquire a stable level. Superhumps were clearly visible in the light curve from our very first time-resolved observations until at least 420 d after the rapid fading from the superoutburst. The spectroscopic and photometric data revealed an orbital period of 109.80 min and a fractional superhump period excess â‰Č0.8 per cent, indicating a very low mass ratio q â‰Č 0.045. With such a small mass ratio the donor mass should be below the hydrogen-burning minimum mass limit. The observed infrared flux in quiescence is indeed much lower than is expected from a cataclysmic variable with a near-main-sequence donor star. This strongly suggests a brown-dwarf-like nature for the donor and that SSS J122221.7−311525 has already evolved away from the period minimum towards longer periods, with the donor now extremely dim

    Bibliography

    No full text
    corecore