18 research outputs found

    Mesenchymal Stromal Cell-Derived Factors Promote Tissue Repair in a Small-for-Size Ischemic Liver Model but Do Not Protect against Early Effects of Ischemia and Reperfusion Injury

    Get PDF
    Loss of liver mass and ischemia/reperfusion injury (IRI) are major contributors to postresectional liver failure and small-for-size syndrome. Mesenchymal stromal cell-(MSC-) secreted factors are described to stimulate regeneration after partial hepatectomy. This study investigates if liver-derived MSC-secreted factors also promote liver regeneration after resection in the presence of IRI. C57BL/6 mice underwent IRI of 70% of their liver mass, alone or combined with 50% partial hepatectomy (PH). Mice were treated with MSC-conditioned medium (MSC-CM) or unconditioned medium (UM) and sacrificed after 6 or 24 hours (IRI group) or after 48 hours (IRI + PH group). Blood and liver tissue were analyzed for tissue injury, hepatocyte proliferation, and gene expression. In the IRI alone model, serum ALT and AST levels, hepatic tissue damage, and inflammatory cytokine gene expression showed no significant differences between both treatment groups. In the IRI + PH model, significant reduction in hepatic tissue damage as well as a significant increase in hepatocyte proliferation was observed after MSC-CM treatment. Conclusion. Mesenchymal stromal cell-derived factors promote tissue regeneration of small-for-size livers exposed to ischemic conditions but do not protect against early ischemia and reperfusion injury itself. MSC-derived factors therefore represent a promising treatment strategy for small-for-size syndrome and postresectional liver failure

    Career orientations of medical students

    No full text
    Introduction In pursuing optimal health care, an adequate medical workforce is crucial. However, many countries are struggling with a misalignment of students' specialty preferences and societal needs regarding the future medical workforce. In order to bridge this gap, it is relevant to gain a better understanding of the medical career choice processes. We explored career orientations among medical students in the Netherlands and their implications for future career choices. Methods We used Q-methodology, a hybrid qualitative-quantitative method, to explore career orientations of medical students. Medical students from tw

    Model selection reveals the butyrate-producing gut bacterium Coprococcus eutactus as predictor for language development in three-year-old rural Ugandan children

    Get PDF
    INTRODUCTION: The metabolic activity of the gut microbiota plays a pivotal role in the gut-brain axis through the effects of bacterial metabolites on brain function and development. In this study we investigated the association of gut microbiota composition with language development of 3-year-old rural Ugandan children. METHODS: We studied the language ability in 139 children of 36 months in our controlled maternal education intervention trial to stimulate children’s growth and development. The dataset includes 1170 potential predictors, including anthropometric and cognitive parameters at 24 months, 542 composition parameters of the children’s gut microbiota at 24 months and 621 of these parameters at 36 months. We applied a novel computationally efficient version of the all-subsets regression methodology and identified predictors of language ability of 36-months-old children scored according to the Bayley Scales of Infant and Toddler Development (BSID-III). RESULTS: The best three-term model, selected from more than 266 million models, includes the predictors Coprococcus eutactus at 24 months of age, Bifidobacterium at 36 months of age, and language development at 24 months. The top 20 four-term models, selected from more than 77 billion models, consistently include C. eutactus abundance at 24 months, while 14 of these models include the other two predictors as well. Mann–Whitney U tests suggest that the abundance of gut bacteria in language non-impaired children (n = 78) differs from that in language impaired children (n = 61). While anaerobic butyrate-producers, including C. eutactus, Faecalibacterium prausnitzii, Holdemanella biformis, Roseburia hominis are less abundant, facultative anaerobic bacteria, including Granulicatella elegans, Escherichia/Shigella and Campylobacter coli, are more abundant in language impaired children. The overall predominance of oxygen tolerant species in the gut microbiota was slightly higher in the language impaired group than in the non-impaired group (P = 0.09). CONCLUSION: Application of the all-subsets regression methodology to microbiota data established a correlation between the relative abundance of the anaerobic butyrate-producing gut bacterium C. eutactus and language development in Ugandan children. We propose that the gut redox potential and the overall bacterial butyrate-producing capacity in the gut are important factors for language development

    Turbulent mixing and mesoscale distributions of late-stage fish larvae on the NW shelf of Western Australia

    No full text
    Light traps were deployed to describe vertical and cross-shelf distributions of late-stage larval fishes during five cruises in each of the 1997/98 and 1998/99 summers in the region of the Gulf of Exmouth on the southern North West Shelf of Western Australia. At each light trap station on a cross-shelf transect we measured water temperature, salinity and chlorophyll a and used vertical plankton tows to estimate zooplankton biomass and copepod abundance. Current meters were deployed on moorings near the transect and the data used to model flows and mixing on the NW Shelf and in the Gulf. The majority of reef, pelagic and baitfish larvae (81, 83 and 66% respectively) were collected at only two stations that marked the boundary between stratified waters offshore and well-mixed water within the Gulf. Most baitfishes (primarily Spratelloides spp.) were captured by traps deployed near the seabed, while reef fishes (mostly pomacentrids, lethrinids and siganids) and pelagic species (mostly scombrids and carangids) were captured in traps deployed near surface. Catch composition varied between summers with 64% of baitfishes collected in the first summer, while the majority of reef and pelagic fishes (81 and 80% respectively) were captured in the second summer. Modelling of circulation showed that the velocity of tidal currents was enhanced by constriction of flow between NW Cape and South Muiron Island and by shallowing of the shelf. Flood-tide intrusions of water allowed the thermocline to move up the continental shelf, upwelling cool nutrient-rich water that was then mixed throughout the entire water column at stations in the mouth of the Gulf. This upwelling and mixing resulted in higher chlorophyll a concentrations and copepod abundances either as a result of local in situ growth or advection/aggregation processes, and may account for the great abundances of late-stage fish larvae in the mouth of the Gulf
    corecore