117 research outputs found

    Tomography of full sawtooth crashes on the Tokamak Fusion Test Reactor

    Get PDF
    Full sawtooth crashes in high temperature plasmas have been investigated on the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 33, 1509 (1991)]. A strong asymmetry in the direction of major radius, a feature of the ballooning mode, and a remaining m=1 region after the crash have been observed with electron cyclotron emission image reconstructions. The TFTR data is not consistent with two-dimensional (2-D) models; it rather suggests a three-dimensional (3-D) localized reconnection arising on the bad curvature side. This process explains the phenomenon of fast heat transfer which keeps the condition q0<1

    Tomography of (2, 1) and (3, 2) magnetic island structures on Tokamak Fusion Test Reactor

    Get PDF
    High-resolution electron cyclotron emission (ECE) image reconstruction has been used to observe (m,n)=(2,1) and (3, 2) island structures on Tokamak Fusion Test Reactor [Plasma Phys. Controlled. Fusion 33, 1509 (1991)], where m and n are the poloidal and the toroidal mode number, respectively. The observed island structure is compared with other diagnostics, such as soft x-ray tomography and magnetic measurements. A cold elliptic island is observed after lithium pellet injection. Evidence for the enhancement of the heat transfer due to the island is observed. A relaxation phenomenon due to the m=2 mode is newly observed in Ohmic plasmas

    Experimental Control and Characterization of Autophagy in Drosophila

    Get PDF
    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy

    Singular Potentials and Limit Cycles

    Get PDF
    We show that a central 1/rn1/r^n singular potential (with n≄2n\geq 2) is renormalized by a one-parameter square-well counterterm; low-energy observables are made independent of the square-well width by adjusting the square-well strength. We find a closed form expression for the renormalization-group evolution of the square-well counterterm.Comment: 15 pages LaTex, 5 eps figures, error in figures and text correcte

    Lawyer rankings either do not matter for litigation outcomes or are redundant

    Get PDF
    I investigate the success of litigants in tax cases in England and Wales between 1996 and 2010. I explore the effect upon success of having better-ranked legal representation, according to rankings of barristers published by Chambers. I find that, for a variety of model specifications, there is no significant positive effect of having better-ranked legal representation. After conducting a sensitivity analysis, I conclude that better-ranked legal representation might have a positive effect on litigation outcomes, but only if better-ranked lawyers receive cases that are substantially more difficult to win. However, if better-ranked lawyers receive substantially more difficult cases, this suggests consumers of legal representation are sophisticated enough to dispense with legal rankings

    Relativistic K shell decay rates and fluorescence yields for Zn, Cd and Hg

    Full text link
    In this work we use the multiconfiguration Dirac-Fock method to calculate the transition probabilities for all possible decay channels, radiative and radiationless, of a K shell vacancy in Zn, Cd and Hg atoms. The obtained transition probabilities are then used to calculate the corresponding fluorescence yields which are compared to existing theoretical, semi-empirical and experimental results

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl
    • 

    corecore