69 research outputs found

    Multidimensional rasch models for partial credit scoring

    Get PDF
    Rasch models for partial-credit scoring are discussed and a multidimensional version of the model is formulated. A model may be specified in which consecutive item responses depend on an underlying latent trait. In the multidimensional partial-credit model, different responses may be explained by different latent traits. Data from van Kuyk’s (1988) size concept test and the Raven Progressive Matrices test were analyzed. Maximum likelihood estimation and goodness-of-fit testing are discussed and applied to these datasets. Goodness-of-fit statistics show that for both tests, multidimensional partial-credit models were more appropriate than the unidimensional partial-credit model. Index terms: X2 testing, exponential family model, multidimensional item response theory, multidimensional Rasch model, partial-credit models, Progressive Matrices test, Rasch model

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure

    Dynamic assessment precursors: Soviet ideology, and Vygotsky

    Full text link

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link
    • …
    corecore