10 research outputs found

    Direct repeat-mediated deletion of a type IV pilin gene results in major virulence attenuation of Francisella tularensis.

    No full text
    Francisella tularensis, the causative agent of tularaemia, is a highly infectious and virulent intracellular pathogen. There are two main human pathogenic subspecies, Francisella tularensis ssp. tularensis (type A), and Francisella tularensis ssp. holarctica (type B). So far, knowledge regarding key virulence determinants is limited but it is clear that intracellular survival and multiplication is one major virulence strategy of Francisella. In addition, genome sequencing has revealed the presence of genes encoding type IV pili (Tfp). One genomic region encoding three proteins with signatures typical for type IV pilins contained two 120 bp direct repeats. Here we establish that repeat-mediated loss of one of the putative pilin genes in a type B strain results in severe virulence attenuation in mice infected by subcutaneous route. Complementation of the mutant by introduction of the pilin gene in cis resulted in complete restoration of virulence. The level of attenuation was similar to that of the live vaccine strain and this strain was also found to lack the pilin gene as result of a similar deletion event mediated by the direct repeats. Presence of the pilin had no major effect on the ability to interact, survive and multiply inside macrophage-like cell lines. Importantly, the pilin-negative strain was impaired in its ability to spread from the initial site of infection to the spleen. Our findings indicate that this putative pilin is critical for Francisella infections that occur via peripheral routes

    Comparing Bacterial Genomes by Searching Their Common Intervals

    No full text
    International audienceComparing bacterial genomes implies the use of a dedicated measure. It relies on comparing circular genomes based on a set of conserved genes. Following this assumption, the common interval appears to be a good candidate. For evidences, we propose herein an approach to compute the common intervals between two circular genomes that takes into account duplications. Its application on a concrete case, comparing E. coli and V. cholerae, is accurate. It indeed emphasizes sets of conserved genes that present high impacts on bacterial functions

    Identification and characterization of mycobacteriophage L5 excisionase

    No full text
    The well-characterized mycobacteriophage L5 forms stable lysogens in Mycobacterium smegmatis. Establishment of lysogeny involves integration of the phage genome into the chromosome of its mycobacterial hosts through an integrase-mediated site-specific recombination event. As L5 lysogens spontaneously generate free phage particles, prophage excision must also occur, although an L5 excisionase gene had not been identified. We show here that L5 gene 36 encodes the phage excisionase and is a small, heat-stable 56-amino-acid protein that strongly stimulates excisive recombination both in vivo and in vitro. The ability to manipulate the highly directional phage integration and excision reactions will provide powerful tools for the introduction, curing and recovery of foreign genes in recombinant mycobacterial strains

    Identification of Brucella spp. genes involved in intracellular trafficking.

    Full text link
    After uptake by host cells, the pathogen Brucella transits through early endosomes, evades phago-lysosome fusion and replicates in a compartment associated with the endoplasmic reticulum (ER). The molecular mechanisms underlying these processes are still poorly understood. To identify new bacterial factors involved in these processes, a library of 1800 Brucella melitensis 16M mini-Tn5catkm mutants was screened for intracellular survival and multiplication in HeLa cells and J774A.1 macrophages. Thirteen mutants were identified as defective for their intracellular survival in both cell types. In 12 of them, the transposon had inserted in the virB operon, which encodes a type IV-related secretion system. The preponderance of virB mutants demonstrates the importance of this secretion apparatus in the intracellular multiplication of B. melitensis. We also examined the intracellular fate of three virB mutants (virB2, virB4 and virB9) in HeLa cells by immunofluorescence. The three VirB proteins are not necessary for penetration and the inhibition of phago-lysosomal fusion within non-professional phagocytes. Rather, the virB mutants are unable to reach the replicative niche and reside in a membrane-bound vacuole expressing the late endosomal marker, LAMP1, and the sec61beta protein from the ER membrane, proteins that are present in autophagic vesicles originating from the ER

    Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments Transformação genética em Citrus sinensis e Citrus limonia mediada por Agrobacterium tumefaciens a partir de segmentos de epicótilo

    Get PDF
    Genetic transformation allows the release of improved cultivars with desirable characteristics in a shorter period of time and therefore may be useful in citrus breeding programs. The objective of this research was to establish a protocol for genetic transformation of Valencia and Natal sweet oranges (Citrus sinensis L. Osbeck) and Rangpur lime (Citrus limonia L. Osbeck). Epicotyl segments of germinated in vitro plantlets (three weeks in darkness and two weeks in a 16-h photoperiod) were used as explants. These were co-cultivated with Agrobacterium tumefaciens strain EHA-105 and different experiments were done to evaluate the transformation efficiency: explants were co-cultivated with Agrobacterium for one, three or five days; explants were incubated with Agrobacterium suspension for 5, 10, 20 or 40 minutes; co-cultivation medium was supplemented with acetosyringone at 0, 100 or 200 &micro;mol L-1; Explants ends had a longitudinal terminal incision (2-3 mm); co-cultivation temperatures of 19, 23 or 27&deg;C were imposed. The experimental design was completely randomized in all experiments with five replications, each consisted of a Petri dish (100 x 15 mm) with 30 explants and resulted in a total of 150 explants per treatment. Longitudinal terminal incision in the explant ends did not improve shoot regeneration. However, transgenic plants of all three cultivars were confirmed from explants that had been subjected to inoculation time of 20 minutes, co-culture of three days at 23-27&deg;C, in the absence of acetosyringone.<br>A transformação genética permite produzir cultivares com características específicas e pode, dessa forma ser associada a programas de melhoramento de citros. O objetivo deste trabalho foi estabelecer protocolos de transformação genética para as laranjas doce 'Valência' e 'Natal' (Citrus sinensis L. Osbeck), bem como para o limão 'Cravo'(Citrus limonia L. Osbeck). Segmentos de epicótilo de plântulas germinadas in vitro (três semanas no escuro e duas semanas sob fotoperíodo de 16h) foram utilizados como explantes. Estes foram co-cultivados com Agrobacterium tumefaciens (EHA-105), realizando-se vários experimentos para avaliar a eficiência do processo de transformação genética: explantes co-cultivados por um, três e cinco dias; tempo de inoculação com a bactéria de 5, 10, 20 e 40 minutos; co-cultivo em meio de cultura contendo 0, 100 e 200 mimol L-1 de acetoseringona; Incisão longitudinal (2-3 mm) nas extremidades do explante; temperatura de co-cultivo 19, 23 e 27&deg;C. Todos os experimentos consistiram de cinco repetições por tratamento, sendo cada repetição representada por uma placa de Petri contendo 30 explantes, perfazendo um total de 150 explantes por tratamento. Plântulas transgênicas dos três cultivares foram obtidas utilizando-se tempo de inoculação de 20 minutos, co-cultivo com Agrobacterium tumefaciens (EHA-105) por três dias, na ausência de acetoseringona no meio de cultura de co-cultivo e temperatura de co-cultivo de 23-27&deg;C. A incisão longitudinal na extremidade do explante favoreceu à organogênese in vitro, mas quando co-cultivado com Agrobacterium não houve regeneração de brotações

    Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease

    No full text
    corecore