43 research outputs found

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Luteinizing hormone inhibits Fas-induced apoptosis in ovarian surface epithelial cell lines

    No full text
    Gonadotrophins including LH have been suggested to play an important role in the etiology of epithelial ovarian cancers. The goal of the present study was to obtain more insight in the mechanism of gonadotrophin action on ovarian surface epithelium (OSE) cells. As the Fas system is known to be a major player in the regulation of the process of apoptosis in the ovary, we investigated whether LH interfered with Fas-induced apoptosis in the human OSE cancer cell lines HEY and Caov-3. Activation of Fas receptor by an agonistic anti-Fas receptor antibody induced apoptosis, as was evaluated by caspase-3 activation, poly(ADP-ribose) polymerase fragmentation, phosphatidylserine externalization and morphological changes characteristic of apoptosis. Co-treatment with LH reduced the number of apoptotic cells following activation of Fas in a transient manner, while LH by itself did not affect apoptosis or cell proliferation. The anti-apoptotic effect of LH could be mimicked by the membrane-permeable cAMP analog 8-(4-chlorophenylthio) cAMP (8-CPT-cAMP), and blocked by H89, a specific inhibitor of protein kinase A (PKA). In conclusion, these findings suggest that LH protects HEY cells against Fas-induced apoptosis through a signaling cascade involving PKA. Although it is plausible that in vivo LH might also enhance OSE tumor growth through inhibition of apoptosis, further research is necessary to confirm this hypothesis

    Luteinizing hormone inhibits Fas-induced apoptosis in ovarian surface epithelial cell lines

    No full text
    Gonadotrophins including LH have been suggested to play an important role in the etiology of epithelial ovarian cancers. The goal of the present study was to obtain more insight in the mechanism of gonadotrophin action on ovarian surface epithelium (OSE) cells. As the Fas system is known to be a major player in the regulation of the process of apoptosis in the ovary, we investigated whether LH interfered with Fas-induced apoptosis in the human OSE cancer cell lines HEY and Caov-3. Activation of Fas receptor by an agonistic anti-Fas receptor antibody induced apoptosis, as was evaluated by caspase-3 activation, poly(ADP-ribose) polymerase fragmentation, phosphatidylserine externalization and morphological changes characteristic of apoptosis. Co-treatment with LH reduced the number of apoptotic cells following activation of Fas in a transient manner, while LH by itself did not affect apoptosis or cell proliferation. The anti-apoptotic effect of LH could be mimicked by the membrane-permeable cAMP analog 8-(4-chlorophenylthio) cAMP (8-CPT-cAMP), and blocked by H89, a specific inhibitor of protein kinase A (PKA). In conclusion, these findings suggest that LH protects HEY cells against Fas-induced apoptosis through a signaling cascade involving PKA. Although it is plausible that in vivo LH might also enhance OSE tumor growth through inhibition of apoptosis, further research is necessary to confirm this hypothesis

    Irregularly shaped inclusion cysts display increased expression of Ki67, Fas, Fas ligand, and procaspase-3 but relatively little active caspase-3

    No full text
    Human ovarian cancers are thought to arise from sequestered ovarian surface epithelial (OSE) cells that line the wall of inclusion cysts. Nevertheless, the early events toward neoplasia are not well understood. In this study, immunoreactivity for apoptotic proteins in human OSE of control and tumor ovarian sections was examined. Ki67, a marker for cell proliferation, was generally absent in the flat-to-cuboidal OSE cells on the ovarian surface and in regularly shaped inclusion cysts. Fas, Fas ligand, and caspase-3, components of the apoptotic pathway, were also largely absent. Ki67, Fas, Fas ligand, and procaspase-3 expression, though not active caspase-3 expression, was more frequently observed in epithelial cells lining irregularly shaped inclusion cysts, particularly in the columnar and MĂĽllerian-like OSE cell types that resembled ovarian tumor OSE cells. Immunoreactivity for these factors as well as active caspase-3 was found frequently in ovarian tumors. We postulate that the appearance of the Fas system and its related proteins in sequestered columnar OSE cells of irregularly shaped inclusion cysts may contribute to balance cell growth with cell death, although little active caspase-3 expression was observed. Further studies are required to identify whether inhibition of apoptosis in inclusion cysts is an early event in ovarian carcinogenesis
    corecore