25 research outputs found

    General Analysis of Inflation in the Jordan frame Supergravity

    Full text link
    We study various inflation models in the Jordan frame supergravity with a logarithmic Kahler potential. We find that, in a class of inflation models containing an additional singlet in the superpotential, three types of inflation can be realized: the Higgs-type inflation, power-law inflation, and chaotic inflation with/without a running kinetic term. The former two are possible if the holomorphic function dominates over the non-holomorphic one in the frame function, while the chaotic inflation occurs when both are comparable. Interestingly, the fractional-power potential can be realized by the running kinetic term. We also discuss the implication for the Higgs inflation in supergravity.Comment: 16 pages, 1 figur

    Evolution of Astrophysics: Stars, Galaxies, Dark Matter, and Particle Acceleration

    No full text

    Evolution of π0\pi^0 suppression in Au+Au collisions from sNN=39\sqrt{s_{NN}} = 39 to 200 GeV

    No full text
    International audienceNeutral-pion, pi^0, spectra were measured at midrapidity (|y|<0.35) in Au+Au collisions at sqrt(s_NN) = 39 and 62.4 GeV and compared to earlier measurements at 200 GeV in the 1<p_T<10 GeV/c transverse-momentum (p_T) range. The high-p_T tail is well described by a power law in all cases and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding p+p-collision spectra. The nuclear-modification factors (R_AA) show significant suppression and a distinct energy dependence at moderate p_T in central collisions. At high p_T, R_AA is similar for 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R_AA well at 200 GeV, fail to describe the 39 GeV data, raising the possibility that the relative importance of initial-state effects and soft processes increases at lower energies. A conclusion that the region where hard processes are dominant is reached only at higher p_T, is also supported by the x_T dependence of the x_T-scaling power-law exponent

    Low-pTp_T direct-photon production in Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV

    No full text
    The measurement of direct photons from Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV in the transverse-momentum range 0.4<pT<30.4<p_T<3 Gev/cc is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon pTp_T spectra for different center-of-mass energies and for different centrality selections at sNN=62.4\sqrt{s_{_{NN}}}=62.4 GeV is scaled with (dNch/dη)α(dN_{\rm ch}/d\eta)^{\alpha} for α=1.21±0.04\alpha=1.21{\pm}0.04. This scaling also holds true for direct-photon spectra from Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV measured earlier by PHENIX, as well as the spectra from Pb++Pb at sNN=2760\sqrt{s_{_{NN}}}=2760 GeV published by ALICE. The scaling power α\alpha seems to be independent of pTp_T, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to pTp_T of 2 GeV/cc. The spectra have a local inverse slope TeffT_{\rm eff} increasing with pTp_T of 0.174±0.0180.174\pm0.018 GeV/cc in the range 0.4<pT<1.30.4<p_T<1.3 GeV/cc and increasing to 0.289±0.0240.289\pm0.024 GeV/cc for 0.9<pT<2.10.9<p_T<2.1 GeV/cc. The observed similarity of low-pTp_T direct-photon production from sNN=39\sqrt{s_{_{NN}}}= 39 to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission

    Low-pTp_T direct-photon production in Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV

    No full text
    The measurement of direct photons from Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV in the transverse-momentum range 0.4<pT<30.4<p_T<3 Gev/cc is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon pTp_T spectra for different center-of-mass energies and for different centrality selections at sNN=62.4\sqrt{s_{_{NN}}}=62.4 GeV is scaled with (dNch/dη)α(dN_{\rm ch}/d\eta)^{\alpha} for α=1.21±0.04\alpha=1.21{\pm}0.04. This scaling also holds true for direct-photon spectra from Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV measured earlier by PHENIX, as well as the spectra from Pb++Pb at sNN=2760\sqrt{s_{_{NN}}}=2760 GeV published by ALICE. The scaling power α\alpha seems to be independent of pTp_T, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to pTp_T of 2 GeV/cc. The spectra have a local inverse slope TeffT_{\rm eff} increasing with pTp_T of 0.174±0.0180.174\pm0.018 GeV/cc in the range 0.4<pT<1.30.4<p_T<1.3 GeV/cc and increasing to 0.289±0.0240.289\pm0.024 GeV/cc for 0.9<pT<2.10.9<p_T<2.1 GeV/cc. The observed similarity of low-pTp_T direct-photon production from sNN=39\sqrt{s_{_{NN}}}= 39 to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission

    Low-pTp_T direct-photon production in Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV

    No full text
    The measurement of direct photons from Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV in the transverse-momentum range 0.4<pT<30.4<p_T<3 Gev/cc is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon pTp_T spectra for different center-of-mass energies and for different centrality selections at sNN=62.4\sqrt{s_{_{NN}}}=62.4 GeV is scaled with (dNch/dη)α(dN_{\rm ch}/d\eta)^{\alpha} for α=1.21±0.04\alpha=1.21{\pm}0.04. This scaling also holds true for direct-photon spectra from Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV measured earlier by PHENIX, as well as the spectra from Pb++Pb at sNN=2760\sqrt{s_{_{NN}}}=2760 GeV published by ALICE. The scaling power α\alpha seems to be independent of pTp_T, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to pTp_T of 2 GeV/cc. The spectra have a local inverse slope TeffT_{\rm eff} increasing with pTp_T of 0.174±0.0180.174\pm0.018 GeV/cc in the range 0.4<pT<1.30.4<p_T<1.3 GeV/cc and increasing to 0.289±0.0240.289\pm0.024 GeV/cc for 0.9<pT<2.10.9<p_T<2.1 GeV/cc. The observed similarity of low-pTp_T direct-photon production from sNN=39\sqrt{s_{_{NN}}}= 39 to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission

    Low-pTp_T direct-photon production in Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV

    No full text
    The measurement of direct photons from Au++Au collisions at sNN=39\sqrt{s_{_{NN}}}=39 and 62.4 GeV in the transverse-momentum range 0.4<pT<30.4<p_T<3 Gev/cc is presented by the PHENIX collaboration at the Relativistic Heavy Ion Collider. A significant direct-photon yield is observed in both collision systems. A universal scaling is observed when the direct-photon pTp_T spectra for different center-of-mass energies and for different centrality selections at sNN=62.4\sqrt{s_{_{NN}}}=62.4 GeV is scaled with (dNch/dη)α(dN_{\rm ch}/d\eta)^{\alpha} for α=1.21±0.04\alpha=1.21{\pm}0.04. This scaling also holds true for direct-photon spectra from Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV measured earlier by PHENIX, as well as the spectra from Pb++Pb at sNN=2760\sqrt{s_{_{NN}}}=2760 GeV published by ALICE. The scaling power α\alpha seems to be independent of pTp_T, center of mass energy, and collision centrality. The spectra from different collision energies have a similar shape up to pTp_T of 2 GeV/cc. The spectra have a local inverse slope TeffT_{\rm eff} increasing with pTp_T of 0.174±0.0180.174\pm0.018 GeV/cc in the range 0.4<pT<1.30.4<p_T<1.3 GeV/cc and increasing to 0.289±0.0240.289\pm0.024 GeV/cc for 0.9<pT<2.10.9<p_T<2.1 GeV/cc. The observed similarity of low-pTp_T direct-photon production from sNN=39\sqrt{s_{_{NN}}}= 39 to 2760 GeV suggests a common source of direct photons for the different collision energies and event centrality selections, and suggests a comparable space-time evolution of direct-photon emission
    corecore