112 research outputs found

    Rigid invariance as derived from BRS invariance: The abelian Higgs model

    Get PDF
    Consequences of a symmetry, e.g.\ relations amongst Green functions, are renormalization scheme independently expressed in terms of a rigid Ward identity. The corresponding local version yields information on the respective current. In the case of spontaneous breakdown one has to define the theory via the BRS invariance and thus to construct rigid and current Ward identity non-trivially in accordance with it. We performed this construction to all orders of perturbation theory in the abelian Higgs model as a prelude to the standard model. A technical tool of interest in itself is the use of a doublet of external scalar ``background'' fields. The Callan-Symanzik equation has an interesting form and follows easily once the rigid invariance is established.Comment: 33 pages, Plain Te

    Meson masses in large Nf QCD from the Bethe-Salpeter equation

    Full text link
    We solve the homogeneous Bethe-Salpeter (HBS) equation for the scalar, pseudoscalar, vector, and axial-vector bound states of quark and anti-quark in large Nf QCD with the improved ladder approximation in the Landau gauge. The quark mass function in the HBS equation is obtained from the Schwinger-Dyson (SD) equation in the same approximation for consistency with the chiral symmetry. Amazingly, due to the fact that the two-loop running coupling of large Nf QCD is explicitly written in terms of an analytic function, large Nf QCD turns out to be the first example in which the SD equation can be solved in the complex plane and hence the HBS equation directly in the time-like region. We find that approaching the chiral phase transition point from the broken phase, the scalar, vector, and axial-vector meson masses vanish to zero with the same scaling behavior, all degenerate with the massless pseudoscalar meson. This may suggest a new type of manifestation of the chiral symmetry restoration in large Nf QCD.Comment: 33 pages, 16 figures. Typos are corrected. Minor corrections and references are added. Version to appear in Phys. Rev.

    Note on CKM Matrix Renormalization

    Full text link
    A simple inspection of the one loop quark self-energy suggests a prescription of the CKM matrix renormalization in the standard model. It leads to a CKM matrix counterterm which is gauge parameter independent and satisfies the unitarity constraint, and renormalized physical amplitudes which are gauge parameter independent and smooth in quark mass difference. We make a point that caution should be practiced when interpreting the CKM martix counterterm in terms of those of parameters in a given representation due to rephasing effects from renormalization. We show how this can be done using the degrees of freedom in the on-shell renormalization scheme.Comment: version 1: 10 pages, no figures; version 2: proofread version for Phys Rev D with minor revisions: (1) divided into 3 sections; (2) added a footnote Comment on Ref. [8] as Ref. item [13]; (3) typos fixed and minor rewordin

    Phase transition and critical behaviour of the d=3 Gross-Neveu model

    Full text link
    A second order phase transition for the three dimensional Gross-Neveu model is established for one fermion species N=1. This transition breaks a paritylike discrete symmetry. It constitutes its peculiar universality class with critical exponent \nu = 0.63 and scalar and fermionic anomalous dimension \eta_\sigma = 0.31 and \eta_\psi = 0.11, respectively. We also compute critical exponents for other N. Our results are based on exact renormalization group equations.Comment: 4 pages, 1 figure; v4 corresponds to the published articl

    Miniature creep tests using plate specimens bonded by electron beam welding

    Get PDF
    Many aged thermal power plants restarted to supply sufficient electricity for Japanese industries and daily activities after the seismic earthquake. Reasonable guidelines for assessment of their integrity and estimation of remaining life have been required to operate them with a safety margin. Miniature Creep (MC) test is recognized as a semi-destructive technique to examine the degradation level of aged high temperature components. The MC thin plate specimen of 2.25Cr-1Mo steel and the similar one welded by Electron Beam (EB) for gauge length were employed to evaluate the validity of the EB welded MC thin plate specimen. A series of creep tests using the MC thin plate specimens were conducted in vacuum at 600°C. Then, following conclusions were obtained: (1) Creep rupture lives of the MC thin plate specimens welded by the EB were nearly the same as those of standard ones. (2) Vickers’ hardness in the welded zone decreased in a short time after the test started and reached almost the same as or below that in the base metal. (3) Rupture lives of the EB welded MC thin plate specimen at higher stress levels were longer than those of the standard MC thin plate specimen

    Flavour Mixing, Gauge Invariance and Wave-function Renormalisation

    Get PDF
    We clarify some aspects of the LSZ formalism and wave function renormalisation for unstable particles in the presence of electroweak interactions when mixing and CP violation are considered. We also analyse the renormalisation of the CKM mixing matrix which is closely related to wave function renormalisation. We critically review earlier attempts to define a set of "on-shell" wave function renormalisation constants. With the aid of an extensive use of the Nielsen identities complemented by explicit calculations we corroborate that the counter term for the CKM mixing matrix must be explicitly gauge independent and demonstrate that the commonly used prescription for the wave function renormalisation constants leads to gauge parameter dependent amplitudes, even if the CKM counter term is gauge invariant as required. We show that a proper LSZ-compliant prescription leads to gauge independent amplitudes. The resulting wave function renormalisation constants necessarily possess absorptive parts, but we verify that they comply with the expected requirements concerning CP and CPT. The results obtained using this prescription are different (even at the level of the modulus squared of the amplitude) from the ones neglecting the absorptive parts in the case of top decay. The difference is numerically relevant.Comment: 19 pages, plain latex, one ps figur

    Exact flow equation for bound states

    Full text link
    We develop a formalism to describe the formation of bound states in quantum field theory using an exact renormalization group flow equation. As a concrete example we investigate a nonrelativistic field theory with instantaneous interaction where the flow equations can be solved exactly. However, the formalism is more general and can be applied to relativistic field theories, as well. We also discuss expansion schemes that can be used to find approximate solutions of the flow equations including the essential momentum dependence.Comment: 22 pages, references added, published versio

    Deriving Non-decoupling Effects of Heavy Fields from the Path Integral: a Heavy Higgs Field in an SU(2) Gauge Theory

    Get PDF
    We describe a method to remove non-decoupling heavy fields from a quantized field theory and to construct a low-energy one-loop effective Lagrangian by integrating out the heavy degrees of freedom in the path integral. We apply this method to the Higgs boson in a spontaneously broken SU(2) gauge theory (gauged linear sigma-model). In this context, the background-field method is generalized to the non-linear representation of the Higgs sector by applying (a generalization of) the Stueckelberg formalism. The (background) gauge-invariant renormalization is discussed. At one loop the log M_H-terms of the heavy-Higgs limit of this model coincide with the UV-divergent terms of the corresponding gauged non-linear sigma-model, but vertex functions differ in addition by finite (constant) terms in both models. These terms are also derived by our method. Diagrammatic calculations of some vertex functions are presented as consistency check.Comment: 33 Pages LaTeX, 6 figures uuencoded postscrip

    CP Violation and Family Mixing in the Effective Electroweak Lagrangian

    Get PDF
    We construct the most general effective Lagrangian of the matter sector of the Standard Model, including mixing and CP violating terms. The Lagrangian contains the effective operators that give the leading contribution in theories where the physics beyond the Standard Model shows at a scale Λ>>MW\Lambda >>M_{W}. We perform the diagonalization and passage to the physical basis in full generality. We determine the contribution to the different observables and discuss the possible new sources of CP violation, the idea being to be able to gain some knowledge about new physics beyond the Standard Model from general considerations, without having to compute model by model. The values of the coefficients of the effective Lagrangian in some theories, including the Standard Model, are presented and we try to draw some general conclusions about the general pattern exhibited by physics beyond the Standard Model in what concerns CP violation. In the process we have had to deal with two theoretical problems which are very interesting in their own: the renormalization of the CKM matrix elements and the wave function renormalization in the on-shell scheme when mixing is present.Comment: A misplaced sentence was correcte

    Mesoscopic interplay of superconductivity and ferromagnetism in ultra-small metallic grains

    Full text link
    We review the effects of electron-electron interactions on the ground-state spin and the transport properties of ultra-small chaotic metallic grains. Our studies are based on an effective Hamiltonian that combines a superconducting BCS-like term and a ferromagnetic Stoner-like term. Such terms originate in pairing and spin exchange correlations, respectively. This description is valid in the limit of a large dimensionless Thouless conductance. We present the ground-state phase diagram in the fluctuation-dominated regime where the single-particle mean level spacing is comparable to the bulk BCS pairing gap. This phase diagram contains a regime in which pairing and spin exchange correlations coexist in the ground-state wave function. We discuss the calculation of the tunneling conductance for an almost-isolated grain in the Coulomb-blockade regime, and present measurable signatures of the competition between superconductivity and ferromagnetism in the mesoscopic fluctuations of the conductance.Comment: 6 pages, 3 figures, To be published in the proceedings of the NATO Advance Research Workshop "Recent Advances in Nonlinear Dynamics and Complex System Physics.
    corecore