129 research outputs found
Data Analysis Challenges for the Einstein Telescope
The Einstein Telescope is a proposed third generation gravitational wave
detector that will operate in the region of 1 Hz to a few kHz. As well as the
inspiral of compact binaries composed of neutron stars or black holes, the
lower frequency cut-off of the detector will open the window to a number of new
sources. These will include the end stage of inspirals, plus merger and
ringdown of intermediate mass black holes, where the masses of the component
bodies are on the order of a few hundred solar masses. There is also the
possibility of observing intermediate mass ratio inspirals, where a stellar
mass compact object inspirals into a black hole which is a few hundred to a few
thousand times more massive. In this article, we investigate some of the data
analysis challenges for the Einstein Telescope such as the effects of increased
source number, the need for more accurate waveform models and the some of the
computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of
GR
The scientific potential of space-based gravitational wave detectors
The millihertz gravitational wave band can only be accessed with a
space-based interferometer, but it is one of the richest in potential sources.
Observations in this band have amazing scientific potential. The mergers
between massive black holes with mass in the range 10 thousand to 10 million
solar masses, which are expected to occur following the mergers of their host
galaxies, produce strong millihertz gravitational radiation. Observations of
these systems will trace the hierarchical assembly of structure in the Universe
in a mass range that is very difficult to probe electromagnetically. Stellar
mass compact objects falling into such black holes in the centres of galaxies
generate detectable gravitational radiation for several years prior to the
final plunge and merger with the central black hole. Measurements of these
systems offer an unprecedented opportunity to probe the predictions of general
relativity in the strong-field and dynamical regime. Millihertz gravitational
waves are also generated by millions of ultra-compact binaries in the Milky
Way, providing a new way to probe galactic stellar populations. ESA has
recognised this great scientific potential by selecting The Gravitational
Universe as its theme for the L3 large satellite mission, scheduled for launch
in ~2034. In this article we will review the likely sources for millihertz
gravitational wave detectors and describe the wide applications that
observations of these sources could have for astrophysics, cosmology and
fundamental physics.Comment: 18 pages, 2 figures, contribution to Gravitational Wave Astrophysics,
the proceedings of the 2014 Sant Cugat Forum on Astrophysics; v2 includes one
additional referenc
Testing the multipole structure of compact binaries using gravitational wave observations
We propose a novel method to test the consistency of the multipole moments of compact binary systems with the predictions of general relativity (GR). The multipole moments of a compact binary system, known in terms of symmetric and trace-free tensors, are used to calculate the gravitational waveforms from compact binaries within the post-Newtonian (PN) formalism. For nonspinning compact binaries, we derive the gravitational wave phasing formula, in the frequency domain, parametrizing each PN order term in terms of the multipole moments which contribute to that order. Using GW observations, this parametrized multipolar phasing would allow us to derive the bounds on possible departures from the multipole structure of GR and hence constrain the parameter space of alternative theories of gravity. We compute the projected accuracies with which the second-generation ground-based detectors, such as the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO), the third-generation detectors such as the Einstein Telescope and Cosmic Explorer, as well as the space-based detector Laser Interferometer Space Antenna (LISA) will be able to measure these multipole parameters. We find that while Advanced LIGO can measure the first two or three multipole coefficients with good accuracy, Cosmic Explorer and the Einstein Telescope may be able to measure the first four multipole coefficients which enter the phasing formula. Intermediate-mass-ratio inspirals, with mass ratios of several tens, in the frequency band of the planned space-based LISA mission should be able to measure all seven multipole coefficients which appear in the 3.5PN phasing formula. Our finding highlights the importance of this class of sources for probing the strong-field gravity regime. The proposed test will facilitate the first probe of the multipolar structure of Einstein’s general relativity
The Challenges in Gravitational Wave Astronomy for Space-Based Detectors
The Gravitational Wave (GW) universe contains a wealth of sources which, with
the proper treatment, will open up the universe as never before. By observing
massive black hole binaries to high redshifts, we should begin to explore the
formation process of seed black holes and track galactic evolution to the
present day. Observations of extreme mass ratio inspirals will allow us to
explore galactic centers in the local universe, as well as providing tests of
General Relativity and constraining the value of Hubble's constant. The
detection of compact binaries in our own galaxy may allow us to model stellar
evolution in the Milky Way. Finally, the detection of cosmic (super)strings and
a stochastic background would help us to constrain cosmological models.
However, all of this depends on our ability to not only resolve sources and
carry out parameter estimation, but also on our ability to define an optimal
data analysis strategy. In this presentation, I will examine the challenges
that lie ahead in GW astronomy for the ESA L3 Cosmic Vision mission, eLISA.Comment: 12 pages. Plenary presentation to appear in the Proceedings of the
Sant Cugat Forum on Astrophysics, Sant Cugat, April 22-25, 201
Enhancing gravitational wave astronomy with galaxy catalogues
Joint gravitational wave (GW) and electromagnetic (EM) observations, as a key
research direction in multi-messenger astronomy, will provide deep insight into
the astrophysics of a vast range of astronomical phenomena. Uncertainties in
the source sky location estimate from gravitational wave observations mean
follow-up observatories must scan large portions of the sky for a potential
companion signal. A general frame of joint GW-EM observations is presented by a
multi-messenger observational triangle. Using a Bayesian approach to
multi-messenger astronomy, we investigate the use of galaxy catalogue and host
galaxy information to reduce the sky region over which follow-up observatories
must scan, as well as study its use for improving the inclination angle
estimates for coalescing binary compact objects. We demonstrate our method
using a simulated neutron stars inspiral signal injected into simulated
Advanced detectors noise and estimate the injected signal sky location and
inclination angle using the Gravitational Wave Galaxy Catalogue. In this case
study, the top three candidates in rank have , and posterior
probability of being the host galaxy, receptively. The standard deviation of
cosine inclination angle (0.001) of the neutron stars binary using
gravitational wave-galaxy information is much smaller than that (0.02) using
only gravitational wave posterior samples.Comment: Proceedings of the Sant Cugat Forum on Astrophysics. 2014 Session on
'Gravitational Wave Astrophysics
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M o
On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio 12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio, but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range from to if we restrict the dimensionless component spin magnitudes to be smaller than 0.05). These mass parameters are consistent with the individual binary components being neutron stars. However, both the source-frame chirp mass and the total mass of this system are significantly larger than those of any other known binary neutron star (BNS) system. The possibility that one or both binary components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to 250-2810
Erratum: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run (Physical Review D - Particles, Fields, Gravitation and Cosmology - 2010: 81(10) 102001-1-102001-20)
This paper was published online on 5 May 2010 with an omission in the Collaboration author list. S. Dwyer has been added as of 12 April 2012. The Collaboration author list is incorrect in the printed version of the journalJ. Abadie... D. J. Hosken... J. Munch... D. J. Ottaway... P. J. Veitch...et al. (LIGO Scientific Collaboration, VIRGO Collaboration
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …