1,177 research outputs found

    Chalcogenide phase change materials for nanoscale switching

    No full text
    Since the demonstration of threshold switching in chalcogenide alloys over forty five years ago, phase change materials have been extensively investigated for switching and data storage applications. Phase change switching is based on the reversible change between crystalline and amorphous states of a material and in many chalcogenides this change of state takes place in nanoseconds

    Metamaterial electro-optic switch of nanoscale thickness

    No full text
    We demonstrate an innovative concept for nanoscale electro-optic switching. It exploits the frequency shift of a narrow-band Fano resonance mode in a plasmonic planar metamaterial induced by a change in the dielectric properties of an adjacent chalcogenide glass layer. An electrically stimulated transition between amorphous and crystalline forms of the glass brings about a 150 nm shift in the near-infrared resonance providing transmission modulation with a contrast ratio of 4:1 in a device of subwavelength thickness

    Characteristics of the grain-filling process and starch accumulation of high-yield common buckwheat ‘cv. Fengtian 1’ and tartary buckwheat ‘cv. Jingqiao 2’

    Get PDF
    High-yield common buckwheat ‘cv. Fengtian 1’ (FT1) and tartary buckwheat ‘cv. Jingqiao 2’ (JQ2) were selected to investigate the characteristics of the grain-filling process and starch accumulation of high-yield buckwheat. FT1 had an average yield that was 43.0% higher than that of the control ‘cv. Tongliaobendixiaoli’ (TLBDXL) in two growing seasons, while JQ2 had an average yield that was 27.3% higher than that of the control ‘cv. Chuanqiao 2’ (CQ2). The Richards equation was utilized to evaluate the grain-filling process of buckwheat. Both FT1 and JQ2 showed higher values of initial growth power and final grain weight and longer linear increase phase, compared with respective control. These values suggest that the higher initial increasing rate and the longer active growth period during grain filling play important roles to increase buckwheat yield. Similar patterns of starch, amylose and amylopectin accumulation were detected in common buckwheat, leading to similar concentration of each constituent at maturity in FT1 and TLBDXL. Tartary buckwheat showed an increasing accumulation pattern of amylose in developing seeds, which differed from that of starch and amylopectin. This pattern led to a significant difference of the concentrations of amylose and amylopectin at maturity between JQ2 and CQ2, the mechanisms of which remained unclear. Nevertheless, both FT1 and JQ2 showed increased starch, amylose, and amylopectin accumulation during the physiological maturity of grains. The results suggest that prolonging the active grain-filling period to increase carbohydrate partitioning from source to seed sink can be an effective strategy to improve buckwheat yield

    Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace

    Full text link
    While a perfect hcp (0001) surface has three-fold symmetry, the diffraction patterns commonly obtained are six-fold symmetric. This apparent change in symmetry occurs because on a stepped surface, the atomic layers on adjacent terraces are rotated by 180 degrees. Here we use a Low-Energy Electron Microscope to acquire the three-fold diffraction pattern from a single hcp Ru terrace and measure the intensity-vs-energy curves for several diffracted beams. By means of multiple scattering calculations fitted to the experimental data with a Pendry R-factor of 0.077, we find that the surface is contracted by 3.5(+-0.9) at 456 K.Comment: 10 pages, 4 figures. Corrected some typos, added more details. Accepted for publication in Surface Science (Letters

    The use of rapid prototyping in the design of a customised ankle brace structure for ACL injury risk reduction.

    Get PDF
    Rapid prototyping, or additive manufacturing, is becoming more useful in creating functional prototypes, especially when customisation is required. This paper explores the use of three-dimensional (3D) printing in designing a customised ankle brace structure for anterior cruciate ligament (ACL) injury risk reduction. A new process is proposed to obtain ankle flexion angles and the corresponding foot surface strain associated with high ACL injury risks through motion analysis. This data is used in the design of the customised ankle brace structure and printed using rapid prototyping. One customised ankle brace structure was printed and tested to demonstrate this proposed framework. The ankle flexion range of motion (ROM) was significantly reduced in the high-risk ankle positions with the ankle brace structure. Rapid prototyping could thus be used to design customised ankle brace structures and this is useful in reducing fabrication time and complexity of customisation. Š 2013 Taylor & Francis

    Gibraltar at the United Nations: Caught between a treaty, the charter and the 'fundamentalism' of the special committee

    Get PDF
    On account of Spain’s long-standing claim to the sovereignty of the British Overseas Territory of Gibraltar, “the Rock” remains one of sixteen non-self-governing territories on the United Nations list awaiting decolonization. This article examines the principles of self-determination and territorial integrity adopted by the United Nations in consideration of the issue of decolonization as they have been applied to Gibraltar, together with the consequences for the parties concerned. With the fiftieth anniversary of the first United Nations Resolution on decolonization on the horizon and the recent adoption by Gibraltar of what is considered to be a noncolonial constitution, the article suggests that it is timely for the United Nations to consider taking a more flexible approach to Gibraltar’s status that would put to one side Spain’s claim but allow Gibraltar to be removed from the UN list

    Bcc 4^4He as a Coherent Quantum Solid

    Full text link
    In this work we investigate implications of the quantum nature of bcc 4^{4}% He. We show that it is a unique solid phase with both a lattice structure and an Off-Diagonal Long Range Order of coherently oscillating local electric dipole moments. These dipoles arise from the local motion of the atoms in the crystal potential well, and oscillate in synchrony to reduce the dipolar interaction energy. The dipolar ground-state is therefore found to be a coherent state with a well defined global phase and a three-component complex order parameter. The condensation energy of the dipoles in the bcc phase stabilizes it over the hcp phase at finite temperatures. We further show that there can be fermionic excitations of this ground-state and predict that they form an optical-like branch in the (110) direction. A comparison with 'super-solid' models is also discussed.Comment: 12 pages, 8 figure

    Exploration of hyperfine interaction between constituent quarks via eta productions

    Full text link
    In this work, the different exchange freedom, one gluon, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the eta production processes, π−p→ηn\pi^{-}p\rightarrow\eta n and γp→ηp\gamma p\rightarrow\eta p. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one pion exchange can not describe the observables and spectrum simultaneously, so can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S11 sates and D13 states as about -30 and 6 degree respectively.Comment: 7 pages, 4 figures, 4 table

    The Consistent Result of Cosmological Constant From Quantum Cosmology and Inflation with Born-Infeld Scalar Field

    Full text link
    The Quantum cosmology with Born-Infeld(B-I) type scalar field is considered. In the extreme limits of small cosmological scale factor the wave function of the universe can also be obtained by applying the methods developed by Hartle-Hawking(H-H) and Vilenkin. H-H wave function predicts that most Probable cosmological constant Λ\Lambda equals to 1η\frac{1}{\eta}(12η\frac{1}{2\eta} equals to the maximum of the kinetic energy of scalar field). It is different from the original results(Λ=0\Lambda=0) in cosmological constant obtained by Hartle-Hawking. The Vilenkin wave function predicts a nucleating unverse with largest possible cosmological constant and it is larger than 1/η1/\eta. The conclusions have been nicely to reconcile with cosmic inflation. We investigate the inflation model with B-I type scalar field, and find that η\eta depends on the amplitude of tensor perturbation δh\delta_h, with the form 1η≃m212π[(9δΦ2Nδh2)2−1].\frac{1}{\eta}\simeq \frac{m^2}{12\pi[(\frac{9\delta_{\Phi}^2}{N \delta_h^2})^2-1]}. The vacuum energy in inflation epoch depends on the tensor-to-scalar ratio δhδΦ\frac{\delta_h}{\delta_{\Phi}}. The amplitude of the tensor perturbation δh{\delta_{h}} can, in principle, be large enough to be discovered. However, it is only on the border of detectability in future experiments. If it has been observed in future, this is very interesting to determine the vacuum energy in inflation epoch.Comment: 12 pages, one figure, references added, accepted by European Physical Journal

    Active photonic metamaterials

    No full text
    Nanostructured photonic metamaterials with narrow-band responses provide a promising platform for applications ranging from slow-light and polarization control to optical modulation and the 'lasing spaser'. We show that the introduction of functional (nonlinear, switchable, gain, etc.) media into such structures provides a powerful paradigm for the active control of their resonant properties, for the enhancement of nonlinear responses and for strong switching performance in sub-wavelength devices
    • …
    corecore