179 research outputs found

    Mechanism of salinity change and hydrogeochemical evolution of groundwater in the Machile-Zambezi Basin, South-western Zambia

    Get PDF
    Machile-Zambezi Basin, South-Western Zambia hosts high salinity groundwater which threatens water security for rural inhabitants. This study investigates the hydrological mechanism that led to high salinity and the geochemical evolution of the groundwater system. The Machile-Zambezi Basin is part of the wider Kalahari Basin which underwent major palaeo-environmental climatic, tectonic and sedimentology dynamics which must have impacted the groundwater salinity. The study examines the groundwater level, hydrochemistry, environmental isotopes (18O/16O, 2H/1H, 3H/3He, 14C/13C). In addition, the sediment cation exchange capacity (CEC) and pore-water chemistry on intact core material were measured. The groundwater chemistry evolved from fresh Ca(Na)HCO3 to saline Na(Ca, Mg)SO4 due to dissolution of salts and not evaporation as indicated by stable isotopes. The saline groundwater is old with 14C ages estimates of more than 1000 years old and stagnant. Geochemical modelling using PHREEQC suggests that ionic exchange due to release of cations from dissolving salts and sulphate reduction were also important processes in this system. High groundwater salinity is therefore associated with Pre-Holocene environmental changes and is restricted to a stagnant saline zone. It will therefore remain unflushed as long as current climatic conditions remain

    Evidence for Association between SH2B1 Gene Variants and Glycated Hemoglobin in Nondiabetic European American Young Adults: The Add Health Study

    Get PDF
    Glycated hemoglobin (HbA1c) is used to classify glycaemia and type 2 diabetes (T2D). Body mass index (BMI) is a predictor of HbA1c levels and T2D. We tested 43 established BMI and obesity loci for association with HbA1c in a nationally representative multiethnic sample of young adults from the National Longitudinal Study of Adolescent to Adult Health [Add Health: age 24–34 years; n = 5641 European Americans (EA); 1740 African Americans (AA); 1444 Hispanic Americans (HA)] without T2D, using two levels of covariate adjustment (Model 1: age, sex, smoking, and geographic region; Model 2: Model 1 covariates plus BMI). Bonferroni adjustment was made for 43 SNPs and we considered P < 0.0011 statistically significant. Means (SD) for HbA1c were 5.4% (0.3) in EA, 5.7% (0.4) in AA, and 5.5% (0.3) in HA. We observed significant evidence for association with HbA1c for two variants near SH2B1 in EA (rs4788102, P = 2.2 × 10−4; rs7359397, P = 9.8 × 10−4) for Model 1. Both results were attenuated after adjustment for BMI (rs4788102, P = 1.7 × 10−3; rs7359397, P = 4.6 × 10−3). No variant reached Bonferroni-corrected significance in AA or HA. These results suggest that SH2B1 polymorphisms are associated with HbA1c, largely independent of BMI, in EA young adults

    Moderate to vigorous physical activity interactions with genetic variants and body mass index in a large US ethnically diverse cohort

    Get PDF
    Summary What is already known about this subject Genome-Wide Association Studies have successfully identified numerous genetic loci that influence body mass index in European-descent middle-aged adults. Adolescence is a high-risk period for the development of adult obesity and severe obesity. Physical activity is one of the most promising behavioural candidates for preventing and reducing weight gain, particularly among youth. What this study adds An examination of the joint association between 41 of the well-established obesity susceptibility single-nucleotide polymorphisms with <5 vs. ≥5 bouts of moderate to vigorous physical activity (MVPA) per week in relation to body mass index (BMI)-for-age Z-score in a nationally representative sample of European American, African-American and Hispanic American adolescents. Three nominally significant interactions (P < 0.05) varied by race/ethnicity. Overall, the estimated effect of the risk allele on BMI-for-age Z-score was greater in individuals with <5 than those with ≥5 bouts MVPA per week. Background Little is known about the interaction between genetic and behavioural factors during lifecycle risk periods for obesity and how associations vary across race/ethnicity. Objective The objective of this study was to examine joint associations of adiposity-related single-nucleotide polymorphisms (SNPs) and moderate to vigorous physical activity (MVPA) with body mass index (BMI) in a diverse adolescent cohort. Methods Using data from the National Longitudinal Study of Adolescent Health (n = 8113: Wave II 1996; ages 12-21, Wave III; ages 18-27), we assessed interactions of 41 well-established SNPs and MVPA with BMI-for-age Z-scores in European Americans (EA; n = 5077), African-Americans (AA; n = 1736) and Hispanic Americans (HA; n = 1300). Results Of 97 assessed, we found nominally significant SNP-MVPA interactions on BMI-for-age Z-score in EA at GNPDA2 and FTO and in HA at LZTR2/SEC16B. In EA, the estimated effect of the FTO risk allele on BMI-for-age Z-score was lower (β = -0.13; 95% confidence interval [CI]: 0.08, 0.18) in individuals with ≥5 vs. <5 (β = 0.24; CI: 0.16, 0.32) bouts of MVPA per week (P for interaction 0.02). Race/ethnicity-pooled meta-analysis showed nominally significant interactions for SNPs at TFAP2B, POC5 and LYPLAL1. Conclusions High MVPA may attenuate underlying genetic risk for obesity during adolescence, a high-risk period for adult obesity

    Screen time behaviours may interact with obesity genes, independent of physical activity, to influence adolescent BMI in an ethnically diverse cohort

    Get PDF
    Background There has been little investigation of gene-by-environment interactions related to sedentary behaviour, a risk factor for obesity defined as leisure screen time (ST; i.e. television, video and computer games). Objective To test the hypothesis that limiting ST use attenuates the genetic predisposition to increased body mass index (BMI), independent of physical activity. Design Using 7642 wave II participants of the National Longitudinal Study of Adolescent Health, (Add Health; mean=16.4 years, 52.6% female), we assessed the interaction of ST (hweek-1) and 41 established obesity single nucleotide polymorphisms (SNPs) with age- and sex-specific BMI Z-scores in 4788 European-American (EA), 1612 African-American (AA) and 1242 Hispanic American (HA) adolescents. Results Nominally significant SNP ST interaction were found for FLJ35779 in EA, GNPDA2 in AA and none in HA (EA: beta [SE]=0.016[0.007]), AA: beta [SE]=0.016[0.011]) per 7hweek-1 ST and one risk allele in relation to BMI Z-score. Conclusions While for two established BMI loci, we find evidence that high levels of ST exacerbate the influence of obesity susceptibility variants on body mass; overall, we do not find strong evidence for interactions between the majority of established obesity loci. However, future studies with larger sample sizes, or that may build on our current study and the growing published literature, are clearly warranted

    A parton picture of de Sitter space during slow-roll inflation

    Full text link
    It is well-known that expectation values in de Sitter space are afflicted by infra-red divergences. Long ago, Starobinsky proposed that infra-red effects in de Sitter space could be accommodated by evolving the long-wavelength part of the field according to the classical field equations plus a stochastic source term. I argue that--when quantum-mechanical loop corrections are taken into account--the separate-universe picture of superhorizon evolution in de Sitter space is equivalent, in a certain leading-logarithm approximation, to Starobinsky's stochastic approach. In particular, the time evolution of a box of de Sitter space can be understood in exact analogy with the DGLAP evolution of partons within a hadron, which describes a slow logarithmic evolution in the distribution of the hadron's constituent partons with the energy scale at which they are probed.Comment: 36 pages; uses iopart.cls and feynmp.sty. v2: Minor typos corrected. Matches version published in JCA

    Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances

    Get PDF
    1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags. 2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km. 3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass). 4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat. 5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far. 6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area

    Obesity Duration, Severity, and Distribution Trajectories and Cardiovascular Disease Risk in the Atherosclerosis Risk in Communities Study

    Get PDF
    BACKGROUND: Research examining the role of obesity in cardiovascular disease (CVD) often fails to adequately consider heterogeneity in obesity severity, distribution, and duration. METHODS AND RESULTS: We here use multivariate latent class mixed models in the biracial Atherosclerosis Risk in Communities study (N=14 514; mean age=54 years; 55% female) to associate obesity subclasses (derived from body mass index, waist circumference, self-reported weight at age 25, tricep skinfold, and calf circumference across up to four triennial visits) with total mortality, incident CVD, and CVD risk factors. We identified four obesity subclasses, summarized by their body mass index and waist circumference slope as decline (4.1%), stable/slow decline (67.8%), moderate increase (24.6%), and rapid increase (3.6%) subclasses. Compared with participants in the stable/slow decline subclass, the decline subclass was associated with elevated mortality (hazard ratio [HR] 1.45, 95% CI 1.31, 1.60, P<0.0001) and with heart failure (HR 1.41, 95% CI 1.22, 1.63, P<0.0001), stroke (HR 1.53, 95% CI 1.22, 1.92, P=0.0002), and coronary heart disease (HR 1.36, 95% CI 1.14, 1.63, P=0.0008), adjusting for baseline body mass index and CVD risk factor profile. The moderate increase latent class was not associated with any significant differences in CVD risk as compared to the stable/slow decline latent class and was associated with a lower overall risk of mortality (HR 0.85, 95% CI 0.80, 0.90, P<0.0001), despite higher body mass index at baseline. The rapid increase latent class was associated with a higher risk of heart failure versus the stable/slow decline latent class (HR 1.34, 95% CI 1.10, 1.62, P=0.004). CONCLUSIONS: Consideration of heterogeneity and longitudinal changes in obesity measures is needed in clinical care for a more precision-oriented view of CVD risk

    Dynamic relationships between body fat and circulating adipokine levels from adolescence to young adulthood: The Santiago Longitudinal Study

    Get PDF
    Background and aims: Adipose tissue secretes adipokines such as adiponectin and leptin, playing important roles in energy metabolism. The longitudinal associations between such adipokines and body fat accumulation have not been established, especially during adolescence and young adulthood and in diverse populations. The study aims to assess the longitudinal association between body fat measured with dual X-ray absorptiometry and plasma adipokines from adolescence to young adulthood. Methods and results: Among Hispanic/Latino participants (N = 537) aged 16.8 (SD: 0.3) years of the Santiago Longitudinal Study, we implemented structural equation modeling to estimate the sex-specific associations between adiposity (body fat percent (BF%) and proportion of trunk fat (PTF)) and adipokines (adiponectin and leptin levels) during adolescence (16 y) and these values after 6 years of follow-up (22 y). In addition, we further investigated whether the associations differed by baseline insulin resistance (IR) status. We found evidence for associations between 16 y BF% and 22 y leptin levels (β (SE): 0.58 (0.06) for females; 0.53 (0.05) for males), between 16 y PTF and 22 y adiponectin levels (β (SE): −0.31 (0.06) for females; −0.18 (0.06) for males) and between 16 y adiponectin levels and 22 y BF% (β (SE): 0.12 (0.04) for both females and males). Conclusion: We observed dynamic relationships between adiposity and adipokines levels from late adolescence to young adulthood in a Hispanic/Latino population further demonstrating the importance of this period of the life course in the development of obesity

    Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods

    Get PDF
    Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated phenotypes are heritable. OBJECTIVE: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposomics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects, low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects. Examples are drawn from studies of biomarkers and health behaviors, exposure domains where the causal inference methods we describe are most often applied. DISCUSSION: Technological, computational, and statistical advances in genotyping, imputation, and analysis, combined with broad data sharing and cross-study collaborations, offer multiple opportunities to strengthen causal inference in exposomics research. Full application of these opportunities will require an expanded understanding of genetic variants that predict exposome phenotypes as well as an appreciation that the utility of genetic variants for causal inference will vary by exposure and may depend on large sample sizes. However, several of these challenges can be addressed through international scientific collaborations that prioritize data sharing. Ultimately, we anticipate that efforts to better integrate methods that incorporate genetic data will extend the reach of exposomics research by helping address the challenges of comprehensively measuring the exposome and its health effects across studies, the life course, and in varied contexts and diverse populations
    corecore