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SUMMARY: Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have
insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated pheno-
types are heritable.

OBJECTIVE: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposo-
mics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects,
low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects. Examples are drawn from studies of biomarkers
and health behaviors, exposure domains where the causal inference methods we describe are most often applied.

DISCUSSION: Technological, computational, and statistical advances in genotyping, imputation, and analysis, combined with broad data sharing and
cross-study collaborations, offer multiple opportunities to strengthen causal inference in exposomics research. Full application of these opportunities
will require an expanded understanding of genetic variants that predict exposome phenotypes as well as an appreciation that the utility of genetic var-
iants for causal inference will vary by exposure and may depend on large sample sizes. However, several of these challenges can be addressed
through international scientific collaborations that prioritize data sharing. Ultimately, we anticipate that efforts to better integrate methods that incor-
porate genetic data will extend the reach of exposomics research by helping address the challenges of comprehensively measuring the exposome and
its health effects across studies, the life course, and in varied contexts and diverse populations. https://doi.org/10.1289/EHP9098

Introduction
The past decade has witnessed a paradigm shift in the environ-
mental sciences as studies have shifted from examining specific
exposures to attempting to comprehensively measure and charac-
terize the broad range of exposures an individual may encounter
over the life course. Termed “exposomics,” this emerging
approach aims to better understand the development and progres-
sion of disease by comprehensively measuring exogenous and en-
dogenous environmental exposures (the “exposome”) at multiple
levels and time periods.1 The exposome is understandably com-
plex and includes domains that span the chemical environment
(e.g., nutrients, medications, and toxicants), health behaviors
(e.g., cigarette smoking, sleeping, and physical activity), the
social environment (e.g., neighborhood characteristics, social net-
works, and racism), and the natural and built environment (e.g., air
and water pollution, green space)1–5 (Figure 1). These domains
include individual and aggregate exposures (e.g., diet and the built
environment) that may be measured directly (e.g., secondhand
smoking) or as a biomarker of exposure or effect (e.g., cotinine).
The exposome’s broad scope and complex correlation structure

have elicited comparisons with the Human Genome Project.3,6,7

However, the dynamic and high-dimensional nature of the expo-
some makes measurement, characterization, and causal inference—
the discipline that considers the assumptions, study designs, and
estimation strategies that allow researchers to draw causal conclu-
sions based on data8,9—far more complex.1

Emerging statistical methods that integrate genetic data offer
several avenues to help address measurement, characterization,
and causal inference challenges in exposomics research. These
approaches are enabled by the time invariance of germline genetic
variants and a growing appreciation that many exposures are herit-
able, making genetic data a central component of the exposome
(Figure 1). For example, although arsenic exposure in itself is not
heritable, prior studies demonstrated that biomarkers of arsenic
metabolism efficiency, which modulates the absolute and relative
amounts of disease associated arsenic metabolites, were highly
heritable (h2 range: 50%–59%).10 The consequent identification of
genetic variants associated with arsenic metabolism efficiency bio-
markers has enabled causal inference studies examining the role of
arsenic in skin lesion risk11 and cardiometabolic diseases.12

The goal of this commentary is to demonstrate how the applica-
tion of causal inference methods that integrate genetic data can
empower and enrich exposomics research by helping address six
challenges:3,4,7,13 reverse causation and unmeasured confounding,
comprehensive examination of phenotypic effects, low efficiency,
replication, multilevel data integration, and characterization of
tissue-specific effects. To frame this commentary for audiences with
varied backgrounds in genetics and exposure science, we provide
overviews of genetic variant measurement, core study designs, and
consortia, as well as exposomic approaches that leverage advances
in high-resolution mass spectrometry (MS).14 We then describe two
core metrics—heritability and genetic risk scores (GRS)—that may
be estimated from genetic data and may inform or be employed in
several approaches we describe: Mendelian randomization (MR),
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phenome-wide association studies (PheWAS), jointmodels formiss-
ing data, cross-study replication,multilevel data integrationmethods,
and tissue-specific biomarker imputation (Table 1). Examples are
drawn from studies of biomarkers and health behaviors, exposure
domains where the causal inference methods we describe are most
often applied. Finally, we acknowledge limitations, including how
the utility of methods that integrate genetic data will vary by expo-
sure and may depend on the presence of specific environmental
exposures1 and large sample sizes.15,16

Measurement of Genetic Variants, Genome-Wide
Association Study (GWAS), and Consortia
Measurement of genetic variants. Over the past three decades,
assays that measured a handful of genetic variants have advanced to
today’swhole genome sequencing.Whole genome sequencing is con-
sidered the gold standard in genomemeasurement because of its accu-
racy, scope, and ability to identify new genetic variants.17 However,
cost, storage, and computational feasibility have limited widespread
adoption of whole genome sequencing. Instead, the primary source of

genetic data remains arrays that genotype 500,000 to 5million genetic
variants. Genotyped genetic variants are then used as a scaffold for
high-quality imputation to a wider set (∼ 40million) of genetic var-
iants,18 helping ensure a common set of genetic variants across studies.
Imputation servers [e.g., the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.html) and the Trans-Omics
PrecisionMedicine (TOPMed) Imputation Server (https://imputation.
biodatacatalyst.nhlbi.nih.gov/)] that perform genetic imputation
quickly and free of charge have streamlined, simplified, and improved
imputation of array data.19–22 Imputation coverage and accuracy
depend crucially on the size of the reference panel used for imputation,
the density of genotyped variants, and the genetic distance between
reference panel populations and target populations.23,24 The largest
broadly available reference panels are from TOPMed, with >135,000
individuals of diverse ancestry.25,26 These panels provide highly accu-
rate imputation of genetic variants down to a minor allele frequency
(MAF) of ∼ 0:1% across multiple ancestries.26 Although earlier ref-
erence panels include individuals frommore diverse worldwide popu-
lations, these reference panels provide more limited imputation
coverage and accuracy because of smaller sample sizes.27

The GWAS. Advances in genotyping and imputation have
facilitated the rise of the GWAS as a key study design to identify
genetic variants associated with complex phenotypes (reviewed
by Tam et al.28). By design, GWAS are unbiased with respect to
mechanistic hypotheses, biological knowledge, and genomic
location.17,29 This design has been remarkably successful in map-
ping variant–phenotype associations.30,31 The requirement for
large sample sizes and the importance of replication has
prompted the formation of numerous large GWAS consortia32–34

that are well powered to detect common, infrequent and rare var-
iants associated with complex phenotypes. These consortia also
routinely share summary-level data (e.g., effect estimates, p-val-
ues, and allele frequencies) that are publicly available via central-
ized repositories30 (https://www.ncbi.nlm.nih.gov/gap/).

Exposomics Consortia
Recognizing the efficiencies enabled by a consortiummodel, expo-
somics consortia also have been formed (see Vrijheid et al.35 and
https://emoryhercules.com/). For example, the EXPOsOMICs pro-
ject is a European exposomics consortium that includes experi-
mental studies, mother–child cohorts, observational studies of
adults, and personal exposuremonitoring studies.36 Several studies
contributing to EXPOsOMICs have genetic data. By including
cohorts across the life course, consortia like EXPOsOMICs enable
examination of questions that would be difficult to conduct within
a single study; these consortia also provide opportunities for repli-
cation or data pooling. Phenotype specific consortia also have
been assembled, including the COnsortium of METabolomics
(COMETS).37 COMETS is the world’s largest metabolomics

Table 1. Six methods or approaches that leverage genetic data to address challenges facing exposomics research and empower causal inference.

Challenge Statistical method or approach afforded by genetic data

Reverse causation and unmeasured confounding Mendelian randomization
Comprehensive phenotype measurement and characterization of phenotypic

effects
PheWAS of genetically predicted exposures in large biobanks or populations

with EHR.
Decreased efficiency from data missing by design or from detection limits Joint models that address missing data from exposure measured on subset of

participants and detection limits by leveraging the information available
from any associations between genetics and covariates with exposomic data

Difficulty replicating findings, particularly if exposure is not measured
broadly, not measured with comparable protocols, or unidentified

External replication using genetically predicted exposures.

Multilevel data that may be difficult to integrate Integrative approaches that use genetic data as a framework to link multi-omic
data.

Limited ability to characterize tissue-specific effects Imputation of tissue-specific biomarkers of exposure and internal dose (e.g.,
transcripts, methylation, metabolomics, proteins) using publicly available
data.

Figure 1. Conceptual diagram of the exposome. By placing genetic data in the
middle of four exposome domains (the natural and built environment, the social
environment, the chemical environment, and health behaviors), the central role
of genetic data is emphasized. Figure adapted from Vermeulen R, Schymanski
EL, Barabasi AL, Miller GW. 2020. The exposome and health: Where chemis-
try meets biology. Science 367:392–396. Reprinted with permission from
AmericanAssociation for the Advancement of Science (AAAS).
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consortium and comprises 47 international cohorts that include
>136,000 participants with bloodmetabolomics data. Genetic data
weremeasured in approximately 68% of COMETS participants.

Core Metrics
Heritability. Heritability (H2) estimates the proportion of pheno-
typic variation (range: 0–1) attributable to additive, dominance,
and epistatic variance components, i.e., “broad-sense heritability”
(reviewed by Zaitlen and Kraft38). Traditional methods to esti-
mate heritability use family-based studies and only quantify addi-
tive genetic variance (“narrow-sense heritability”)—the major
contributor to H2—given longstanding challenges estimating
nonadditive genetic variance.39 Recent innovations have enabled
approximation of narrow-sense heritability in population-based
studies using genetic data40; these approximations typically
underestimate narrow-sense heritability due to incomplete link-
age disequilibrium (LD) between causal genetic variants and gen-
otyped genetic variants as well as error in genetic variant effect
estimates.15

Narrow-sense heritability can help gauge the potential utility
of genetic data to inform causal inference for a given exposure,
because genetic data will have limited value when narrow-sense
heritability is low. As an example, an Australian twin study of
the metallic elements arsenic, cadmium, copper, mercury, lead,
selenium, and zinc measured in erythrocytes estimated narrow-
sense heritabilities of moderate size ranging from 0.19 (cad-
mium) to 0.40 (lead).41 A follow-up GWAS of copper, selenium,
and zinc identified eight highly significant (p<5×10−8) common
genetic variants that mapped to loci containing genes with roles
in trace element metabolism.42 These genetic variants accounted
for 4%–8% of phenotypic variance in copper, selenium, and zinc.
Effects of this magnitude are considerably larger than the major-
ity of genetic variants identified by GWAS to date.43

Genetically Predicted Phenotypes
Genetic data can help extend the reach of exposome studies by
enabling the estimation of genetically predicted phenotypes.
These genetically predicted phenotypes are then substituted for
measured phenotypes when conducting association studies or
causal inference investigations. As described below, in addition
to expanding the number of phenotypes for evaluation, the use of
a genetically predicted phenotype can help reduce bias from con-
founding and reverse causation.44

Genetically predicted phenotypes can be constructed using
one genetic variant, a limited number of genetic variants, or hun-
dreds to millions of genetic variants. For phenotypes with a mon-
ogenic or oligogenic genetic architecture, genetically predicted
phenotypes may be constructed using one genetic variant or by
aggregating a small number of independent genetic variants.45,46

For polygenic phenotypes, genetically predicted phenotypes often
are constructed by aggregating hundreds to millions of genetic
variants (reviewed by Chatterjee et al.47 and Wray et al.15).

Aggregation of genetic variants into a genetically predicted
phenotype is accomplished using a GRS. GRS are calculated
as a sum of genetic variants that are typically weighted by the
magnitude of association between each genetic variant and
the phenotype of interest. Numerous approaches are available
to estimate GRS, which are distinguished by the method used
to select and weigh genetic variants and the method used to
account for LD. GRS weights are usually derived from a
GWAS47–49 and then applied in an independent, ancestry-
matched target sample for validation.15,49 In the absence of an
independent target sample for validation, methods are emerg-
ing50,51 that estimate GRS using cross-validation to address

overfitting. These methods offer efficient alternatives for stud-
ies without access to independent data and may be particularly
useful when examining a phenotype that is difficult to measure, a
phenotype that is uncommonly measured or when conducting
research in a unique population.

Exposure Science and the Chemical Exposome
Environmental health studies have undergone a dramatic shift in
recent years, with rapid technological advancements enabling
broader coverage of the chemical exposome while also expanding
the inclusion of nonchemical stressors.7,52,53 Approaches for
chemical exposome characterization include suspect screening
and nontargeted analyses, which enable the measurement of
many chemicals simultaneously using approaches that rely on
high-resolution chemical detection coupled with computational
methods to efficiently mine large data sets. Targeted analytical
methods also may be employed to evaluate the impacts of expo-
sures to chemical mixtures in the environment.54 These methods
provide more limited coverage of chemicals and thus may not
capture exposure information at the “-omic” level. Indeed, an
increasing number of global measurement approaches have
recently been implemented to characterize exposome signatures
within environmental media, including household dust,55 drink-
ing water,56 and consumer products.57 Biological samples, such
as blood, saliva, teeth, and urine, also may be analyzed to mea-
sure chemicals and their associated metabolites, as well as other
exposure biomarkers.53,58–62

Suspect screening and nontargeted analyses. Suspect screen-
ing and nontargeted analyses leverage MS platforms coupled
with compound database matching approaches to identify and
potentially confirm chemicals.63–66 Suspect screening can be
implemented using both gas chromatography (GC) and liquid
chromatography (LC) separation followed by either low- or high-
resolution MS detection. GC-based methods can be aided by the
addition of electron ionization, whereas LC-based methods can
use softer ionization techniques, such as electrospray ionization
or atmospheric pressure chemical ionization, resulting in detailed
fragmentation spectra information to better identify tentative
chemicals. With suspect screening approaches, resulting spectra
are compared against a library of known compounds, and those
with matching attributes are identified and prioritized for confir-
mation. Nontargeted approaches, in contrast, rely on high-
resolution MS platforms to acquire accurate mass, isotope profile,
and fragmentation spectra. These data are then used to predict
chemical structures, and chemicals are tentatively assigned for-
mulas and associated chemical identifier information. Therefore,
suspect screening analyses query for known chemicals, whereas
nontargeted analyses generate information on chemicals that are
potentially completely unknown. Both approaches yield tenta-
tively identified chemicals which require further confirmation,
using tandem mass spectrometry (MS/MS) fragmentation infor-
mation or confirmation via chemical standards.63,64

Prioritizing chemicals for confirmation. It is not feasible to
confirm all, or even the majority, of chemicals in a given sample.
Because of this limitation, it is important to develop and imple-
ment methods to prioritize chemicals for final confirmation. Data
streams to aid prioritization include chemical exposure estimates
and metabolite predictions, which inform the likelihood of a
chemical being absent or present in a given sample, as well as
toxicity screening and prediction data, which inform the likeli-
hood of a chemical being toxic and therefore of high interest.55,64

As these methods grow, exposomic measures likely will become
increasingly integrated across multiple tiers of data to better
address the dynamic nature of the exposome and its overall influ-
ence on health and disease.
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How Causal Inference Methods and Study Designs That Use
Genetic Data Can Empower Exposomics
In this section we draw on research interrogating a spectrum of
exposures to demonstrate how causal inference methods and
study designs that integrate genetic data can empower exposo-
mics research. We focus on six challenges that are not necessarily
unique to exposomics research, but we consider particularly sa-
lient, given the score and dimensionality of the exposome.
Although it may not be feasible to comprehensively address all
six challenges using causal inference methods and study designs
that integrate genetic data, we anticipate that these approaches
will help strengthen causal inference for numerous exposome
phenotypes.

Method 1: Evaluate reverse causation and unmeasured con-
founding. Ideally exposomics research would leverage a longitu-
dinal prospective design in which exposures are sampled
repeatedly before an outcome occurs.4 However, many exposome
studies use cross-sectional67 or case–control designs.68 Reverse
causation is a concern with these designs, because disease status
may affect the exposure or its measurement.69–71 Other chal-
lenges include unmeasured or poorly measured confounders as
well as exposures that are poorly understood, making the identifi-
cation of confounders difficult. MR, a popular causal inference
tool that uses genetic data to investigate associations between
potentially modifiable risk factors, including environmental expo-
sures, and outcomes in observational data (reviewed by Davies
et al.44), has been proposed to help address these challenges.

MR is a form of instrumental variable (IV) analysis72 based
on the concept that if exposure X affects outcome Y, factors
affecting X (i.e., inherited genetic variants, G) also must affect Y
(Figure 2). G therefore serves as an IV for studies of the X–Y
association. Strengths of MR include G–Y associations that are
generally robust to confounding from variables other than ances-
try, which can be addressed through adjustment.73 Because G is
determined at conception, G precedes Y, also protecting against
reverse causation under the assumption that G is associated with
X, not Y or an alternative cause of Y.74 MR also is dependent on
the identification of a strong genetic IV (i.e., a genetically pre-
dicted phenotype) and assumes an absence of pleiotropy (i.e., the
effect of G on Y is not exclusively through X). The development
of methods to evaluate these assumptions is an active area of
research75,76 and alternative methods, including mediation analy-
sis, have been proposed when assumptions are violated77 or when
biological mechanisms do not conform to assumptions.78 If IV
assumptions are satisfied, MR can inform on the presence and
direction of the association between X and Y. However, numeri-
cal MR estimates generally are not informative, because by esti-
mating the G–Y association, MR estimates cannot be interpreted
as the predicted real-world influence of changes to X.79 Although

few investigators have successfully used MR to study time-
varying exposures,80 methods are under development.81

Despite these challenges, MR has been used to strengthen
causal inference in exposomics research across a variety of pheno-
types.82–84 For example, Pierce et al.11 used MR to confirm the
presence and direction of the association between biomarkers of ar-
senic methylation efficiency and arsenic toxicity.11 Here, MR
helped gauge the degree to which observational findings reflected
reverse causation or residual confounding by unmeasured or
poorly measured covariates in a process termed “triangulation,”
i.e., the integration of results from several different approaches,
each with different and unrelated key sources of potential bias.85

Other applications of MR relevant to exposomics research include
multivariate MR, which has been used to simultaneously examine
causal effects of correlated phenotypes.86

Method 2: comprehensively examine phenotypic effects.
Few studies have comprehensively studied the health effects of
exposome phenotypes.87 However, advances in large-scale phe-
notyping through biobanks and linkage to electronic health
records (EHR), in combination with genetic data, offer opportuni-
ties to help address this research gap via a PheWAS (reviewed by
Bush et al.88). Benefits of the hypothesis-free PheWAS include
broad phenotypic characterization, enabling the identification of
potentially novel associations. For example, a recent PheWAS of
genetically predicted serum calcium examined associations with
925 disease outcomes constructed from hospital inpatient and
mortality data.89 This PheWAS identified associations with renal,
musculoskeletal, and cardiovascular phenotypes, which in part mir-
ror findings from calcium supplementation trials.90 Unexpected asso-
ciations with allergy or adverse effects of penicillin also were
identified, which may point to an unappreciated role of calcium in
immune function.

Limitations of PheWAS include the requirement of a geneti-
cally predicted phenotype and large sample sizes with broad phe-
notypic characterization in the same ancestral population from
which the genetically predicted phenotype was constructed.91,92

In addition, few EHR PheWAS have fully incorporated unstruc-
tured exposure, behavioral, or lifestyle data, which are likely
highly relevant to exposomics research but are challenging to
extract from or missing in clinical free text.93 Emerging elec-
tronic phenotyping approaches93 and global biobank initiatives94

offer potential ways forward.
Method 3: increase efficiency. Due to cost or other con-

straints, biomarkers of exposure and effect may be measured on a
subset of study participants. Measuring biomarkers on a subset of
participants, thereby introducing missing data due to study design,
reduces efficiency in comparison with an analysis of the entire
study population, thereby introducing uncertainty and decreasing
statistical power. Because genetic data often are available on larger

Figure 2. Example causal diagram representing the relationship between genetic variants G, exposure X, and outcome Y. The hypothesis tested by Mendelian
randomization is shown by the dotted arrow where G serves as an instrumental variable for X (solid arrow).
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population subsets, statistical methods that use genetic data to infer
biomarkers in participants not selected for measurement can help
increase efficiency. For example, the Atherosclerosis Risk in
Communities (ARIC) study measured serum metabolites on 4,032
(26%) of 15,792 participants at baseline.95 Although most analyses
investigating associations betweenmetabolites and outcomes often
restrict to this smaller sample size, imputation methods may
increase efficiency. These methods perform well when the sample
with measured data is a random or stratified random sample of the
larger study population.96–98

In addition to missing data due to study design, many bio-
markers of exposure and effect are subject to limits of detection
and are nondetectable. There are commonly accepted analytic
practices for nondetectable data; however, most methods cannot
address multiple missing data mechanisms.99,100 Treating all miss-
ing data as originating from one missing data mechanism also can
result in grossly inefficient and potentially biased estimates.101,102

Methods that leverage genetic data can account for biomarker
data that are missing due to study design and limits of detection.
Using metabolites as an example, these missing-data methods use
joint models to model both the association between genetic data
and metabolites and the association between the metabolites and
the outcome103; data from participants with genetic and outcome
data are used regardless of whether metabolites were measured.
By using data from a larger group of participants (e.g., increasing
the sample size from n=4,032 to n=12,773 in the ARIC
Study104), these models offer more efficient estimates of expo-
sure–outcome associations. Accounting for two types of missing
data also reduces the potential for biased estimates. Simulations
have shown scenarios where these methods provided virtually
unbiased estimates, whereas methods addressing only one type of
missing data can provide estimates that can differ by as much as
20% from the true value.103

Method 4: replicate findings. Genetic data also provide a
template for replication, defined here as the consistent estimation
of effect direction, significance, and potentially magnitude
(depending on the phenotype under investigation) in an independ-
ent sample from the same source population.105 Replication is
especially important in exposomic studies, because the number of
exposures adds an exploratory element and concomitant large
potential for false positive findings106 that may mislead scientists
and the public and misdirect the allocation of scientific resources.
In GWAS, the potential for a high proportion of false positive
results was addressed through imputation to common genotype
reference panels, stringent multiple hypothesis testing correction,
and replication (reviewed in Weinberg107 and Chanock et al.108).
A parallel framework is needed in exposomics research, although
many exposures may not be measured broadly. Methods and out-
put also may vary across studies according to study design factors
such as, including sample type, instrumentation, analytical condi-
tions, and the domain of chemicals under investigation.

For studies of the exposome where researchers do not have
access to an independent replication sample, genetic data may
provide a partial solution. To illustrate, a recent study identified
associations between manganese, lead, and chromium biomarkers
with intelligence quotient (IQ) in adolescents.67 Although the
authors did not attempt replication, partnering with an independ-
ent study with measured IQ and genetic data from which to con-
struct measures of genetically predicted manganese, lead, and
chromium phenotypes could provide a replication opportunity.
Other avenues for replication could include publicly available
GWAS summary statistics.30 Using publicly available GWAS
summary statistics, researchers could examine whether genetic
variants predictive of the phenotype of interest also were predic-
tive of the outcome. Returning to the Bauer 2020 example,

genetic variant rs13107325 was identified in GWAS of manga-
nese109 as well as intelligence110 and general cognitive ability,111

providing independent evidence linking manganese with IQ.
Method 5: multilevel data integration. The exposome

includes exposures that are multilevel, complex, and likely
affected by genetic, environmental, and gene-by-environment
effects. However, when describing these complexities, a majority
of exposome studies distinguish between environmental and
genetic causes of disease, with few studies considering opportu-
nities to integrate information. Multi-omics studies, which
include genomic, epigenomic, transcriptomic, proteomic, micro-
biomic, and exposomic data, are emerging efforts that attempt to
disentangle complex, multilayered exposure effects. Examples of
multilevel exposome studies include dimensionality reduction
and variable selection approaches that consider the correlation
structure between multiple omics.112 Systems and network analy-
ses also have been used to better assess the complex interplay
within and between different omics while accounting for biologi-
cal functionality.113,114 Parallel efforts include the modeling of
concentration dependency and several tools that accommodate
different dose–response trends also have been published.115,116

Together, these approaches are promising avenues to address
cross-omics relationships and their complex dynamics.117

Despite emerging interests in multi-omics studies, few studies
have integrated genetics data with other omics data, even though
genetics is the most mature of the omics fields.118 One example
is provided by research examining atopic dermatitis (AD),119

which integrated genetic, epigenomic, transcriptomic, and proteo-
mic data to better understand disease heterogeneity. A crucial
component of that study approach was the use of GWAS findings
to identify priority genes from which candidate disease pathways
integrating multilevel data were constructed and tested.

Method 6: characterization of tissue-specific effects.
Biomarkers of exposure and effect are a promising tool to evalu-
ate molecular responses to exposures as well as downstream con-
sequences of variation in molecular response. However, direct
measurement of biomarkers across relevant tissues is largely
infeasible due to expense and tissue accessibility. This evidence
gap constrains interpretation of biomarker effects and determina-
tion of relevance. The parallel collection of genetic and omics
data in varied tissues enables construction of tissue-specific ge-
netically predicted phenotypes; one example is the construction
of genetically predicted gene expression.120,121 Measures of ge-
netically predicted gene expression offer a partial solution to
examining downstream effects of variation in tissue-specific gene
expression, because models to infer genetically predicted gene
expression are publicly available (http://predictdb.org/ and http://
gusevlab.org/projects/fusion/). These models also can be used to
construct exposures for association testing and to examine evi-
dence of tissue-specific effects. Similar imputation approaches
are being developed for other omics, including DNA methylation
levels.122 Although exposomics research examples are currently
scarce, emerging research examining genetically predicted omics
in inaccessible but highly relevant tissues demonstrates the role
of this emerging approach for pathophysiological insight.123

Discussion
In this commentary, we described how the increased application
of genetic data and methods could strengthen causal inference in
exposomics research. These approaches are enabled by the broad
availability of genetic data, the active development of causal in-
ference tools and study designs that use genetic data, publicly
available data repositories, and a growing appreciation that many
exposome phenotypes are heritable.124 Although the application
of genetic data and methods may add analytical complexity, these
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approaches offer the potential to extend the reach of exposomics
research and help address the challenges of comprehensively
measuring the exposome and its health effects across studies, the
life course, and in varied contexts and in diverse populations.

We acknowledge several limitations to the application of
genetic data and methods for causal inference in exposomics
research. Few studies have comprehensively cataloged genetic
variants that predict diverse exposures. Even when genetic var-
iants have been identified and replicated in independent studies,
ascertaining biological impact remains challenging.125 However,
interpretation of a genetic variant’s impact is not necessarily
required for many of the methods we propose, noting that some
of the approaches we describe (e.g., using genetic data to charac-
terize tissue-specific effects) may help illuminate effects in
toxicity-relevant tissues and organs. We therefore advocate for
expanding the evidence base to examine more comprehensively
the genetic architecture of exposure biomarkers126 and health
behaviors,127,128 the exposome domains that most likely harbor
heritable exposures or exposure biomarkers. Another major chal-
lenge is the lack of diversity in published GWAS. Although the
limited racial/ethnic diversity of GWAS has been the topic of
several commentaries,129 GWAS in populations exposed to spe-
cific toxicants or populations capturing crucial life course stages
(e.g., infancy and childhood or pregnancy) also remain uncom-
mon. Expanding the diversity of GWAS and the cataloging of
genetic variants that predict exposome phenotypes, e.g., by inter-
national scientific collaborations that share summary results
through established repositories, could help remedy these
research gaps. Further, we excluded discussion of gene–environ-
ment interaction, instead focusing on genetic data applications
that are less well known in exposomics research. Consistent with
the other challenges described, methods to enhance gene–envi-
ronment interaction studies are areas of active research.130–132

Finally, the sample sizes needed to construct well-powered genet-
ically inferred phenotypes may be infeasible for a single study.
Again, the sharing of summary data is a disciplinary norm that
can increase statistical power to detect genetic effects and con-
struct predictive genetically inferred phenotypes, particularly
when examining phenotypes influenced by many common
genetic variants of small effects, phenotypes for which the
genetic effects are only observable in the presence of specific
exposures that are themselves uncommon, or when studying
gene–environment interaction.1

Wild proposed the concept of the exposome in 2005,1 empha-
sizing the need to balance investments in genetics research with
investments in exposomics research. Almost two decades later,
distinctions between environmental vs. genetic effects on disease
remain common in the exposomics literature,3,6,133 with few
examples of studies that successfully integrate both sources of
data. It is noteworthy that many of the perceived hurdles associ-
ated with genetic data, including measurement scale, are not new
to exposure scientists. Fully leveraging exposomic data also
requires embracing biological complexity and systems-level think-
ing, two core exposure science paradigms.2 Adding genetic data
simply adds one more level of complexity. Ultimately, the success
of attempts to integrate genetic data into exposomics research will
likely require environmental scientists to expand their large collab-
orative network to include geneticists and genetic epidemiologists,
because the requisite data are largely extant.36 Through these col-
laborations, efforts that better integrate genetic and exposomics
data to improve human health are achievable.
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