21 research outputs found

    Water quality of the Great Barrier Reef : distributions, effects on reef biota and trigger values for the protection of ecosystem health

    Get PDF
    This Report to the GBMPA provides technical background information and statistical data analysis for defining improved water quality guideline trigger values for the GBR Water Quality Guidelines

    Chapter 17: Vulnerability of coral reefs of the Great Barrier Reef to climate change

    Get PDF
    The Great Barrier Reef (GBR) contains the most extensive coral reef ecosystem on earth. It consists of 2900 coral reefs and 900 coral cays that cover approximately 20,000 km2 of the total 345,000 km2 area of the GBR Marine Park. As a consequence of unusually high summer sea surface temperatures, between 42 to 60 percent of the reefs of the GBR experienced mass coral bleaching in 19988. Bleaching was also reported from 31 other nations around the world during 1997–1998. For example, about 50 percent of reefs in the Indian Ocean and south Asia lost much of their coral cover, and an estimated 16 percent of the world’s area of coral reefs was severely damaged. The event coincided with the strongest recorded El Niño-Southern Oscillation event (ENSO) and one of the warmest years on record.This is Chapter 17 of Climate change and the Great Barrier Reef: a vulnerability assessment. The entire book can be found at http://hdl.handle.net/11017/13

    Climate change and the Great Barrier Reef: a vulnerability assessment

    Get PDF
    Reef-building corals (Order Scleractinia Class Anthozoa) form extensive skeletons of calcium carbonate (limestone), depositing enough material over time to form vast reef structures that may be easily seen from space. The majority of reef-building corals are hard (stony) scleractinian corals. Many octocorals (especially soft corals in the family Alcyoniidae and the blue coral Heliopora) and some hydrozoan corals (such as Millepora) also contribute to reef-building. Corals form the framework of reef structures, while other organisms such as calcareous algae (especially red coralline algae) play a key role in cementing and consolidating the reef framework. This chapter focuses on the vulnerability of reef-building corals to climate change. The implications of climate change for macroalgae are covered in chapter 7 and a broader treatment of reef processes is provided in chapter 17.This is Chapter 10 of Climate change and the Great Barrier Reef: a vulnerability assessment. The entire book can be found at http://hdl.handle.net/11017/13

    Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef

    No full text
    The contribution of sexual and asexual reproduction, the spatial patterns of genetic structure, and the potential gene flow among populations were determined for the soft coral Clavularia koellikeri (Octocorallia: Alcyonacea, Clavulariidae) at ten sites among six reefs from two well-separated regions of the Great Barrier Reef (GBR), Australia. Eight allozyme loci indicated that colonies of C. koellikeri separated ≥3 m were produced sexually. Genetic diversity was lower in the southern (18°S) compared with the northern (10°S) populations, suggesting that reefs closer to the southernmost limit of the distribution of C. koellikeri within the GBR (19°S) may represent a more marginal habitat for this species. High levels of genetic differentiation were significant at all spatial scales (sites within reefs, reefs, and regions) from <4 km up to 1,000 km, indicating that C. koellikeri has restricted dispersal, consistent with having brooded larvae

    The effects of river run-off on water clarity across the central Great Barrier Reef

    Get PDF
    Changes in water clarity across the shallow continental shelf of the central Great Barrier Reef were investigated from ten years of daily river load, oceanographic and MODIS-Aqua data. Mean photic depth (i.e., the depth of 10% of surface irradiance) was related to river loads after statistical removal of wave and tidal effects. Across the ~25,000 km2 area, photic depth was strongly related to river freshwater and phosphorus loads (R2 = 0.65 and 0.51, respectively). In the six wetter years, photic depth was reduced by 19.8% and below water quality guidelines for 156 days, compared to 9 days in the drier years. After onset of the seasonal river floods, photic depth was reduced for on average 6–8 months, gradually returning to clearer baseline values. Relationships were strongest inshore and midshelf (~12–80 km from the coast), and weaker near the chronically turbid coast. The data show that reductions in river loads would measurably improve shelf water clarity, with significant ecosystem health benefits

    The effects of long-term in situ CO(2) enrichment on tropical seagrass communities at volcanic vents

    No full text
    The effects of long-term exposure to elevated levels of carbon dioxide (CO(2)) on seagrass communities are still poorly understood. This study investigates the tropical subtidal seagrass communities at three shallow volcanic CO(2) vents in Papua New Guinea. Seagrass cover and biomass increased threefold and fivefold, respectively, from control to medium and high pCO(2) sites (average pH = 7.9, 7.7, and 7.5, respectively). The seagrass community composition differed significantly between the pCO(2) sites: Cymodocea serrulata, Cymodocea rotundata, and Halodule uninervis were more abundant at high pCO(2) sites, whereas Halophila ovalis, Thalassia hemprichii, and Syringodium isoetifolium occurred only at low and mid pCO(2) sites. Cymodocea rotundata was the only species common among all pCO(2) sites and locations. The δ13C in its leaves significantly declined with increasing pCO(2), indicating that additional CO(2) influenced seagrass carbon uptake, and specifically, that there was discrimination against the heavier isotope (13C) when carbon was more abundant. Size-specific leaf growth rates (i.e. leaf turnover) also significantly declined with increasing pCO(2); however, leaf growth rates showed no consistent difference in response to elevated pCO(2) in two of four surveys. Our study suggests that progressive ocean acidification may lead to higher cover and above- and below-ground biomass, but lower size-specific growth and altered species composition in tropical seagrass communities. The effects of co-limiting factors, such as light and nutrient availability, on early-responding parameters, such as growth rates, require further attention to improve projections

    Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    No full text
    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5॰-19.0॰S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management

    Importance of wave-induced bed liquefaction in the fine sediment budget of Cleveland Bay, Great Barrier Reef

    No full text
    Data from a three-year long field study of fine sediment dynamics in Cleveland Bay show that wave-induced liquefaction of the fine sediment bed on the seafloor in shallow water was the main process causing bed erosion under small waves during tradewinds, and that shear-induced erosion prevailed during cyclonic conditions. These data were used to verify a model of fine sediment dynamics that calculates sediment resuspension by both excess shear stress and wave-induced liquefaction of the bed. For present land-use conditions, the amount of riverine sediments settling on the bay may exceed by 50–75% the amount of sediment exported from the bay. Sediment is thus accumulating in the bay on an annual basis, which in turn may degrade the fringing coral reefs. For those years when a tropical cyclone impacted the bay there may be a net sediment outflow from the bay. During the dry, tradewind season, fine sediment was progressively winnowed out of the shallow, reefal waters
    corecore