90 research outputs found
In vitro antiviral activity of medicinal mushroom Ganoderma neo-japonicum Imazeki against enteroviruses that caused hand, foot and mouth disease
Hand, foot and mouth disease (HFMD) is a highly contagious viral disease that predominantly affects children younger than 5 years old. HFMD is primarily caused by enterovirus A71 (EVA71) and coxsackievirus A16 (CV-A16). However, coxsackievirus A10 (CV-A10) and coxsackievirus A6 (CV-A6) are being increasingly reported as the predominant causative of HFMD outbreaks worldwide since the past decade. To date, there are still no licensed multivalent vaccines or antiviral drugs targeting enteroviruses that cause HFMD, despite HFMD outbreaks are still being frequently reported, especially in Asia-Pacific countries. The high rate of transmission, morbidity and potential neurological complications of HFMD is indeed making the development of broad-spectrum antiviral drugs/agents against these enteroviruses a compelling need. In this study, we have investigated the in vitro antiviral effect of 4 Ganoderma neo-japonicum Imazeki (GNJI) crude extracts (S1-S4) against EV-A71, CV-A16, CV-A10 and CV-A6. GNJI is a medicinal mushroom that can be found growing saprophytically on decaying bamboo clumps in Malaysian forests. The antiviral effects of this medicinal mushroom were determined using cytopathic inhibition and virus titration assays. The S2 (1.25 mg/ml) hot aqueous extract demonstrated the highest broad-spectrum antiviral activity against all tested enteroviruses in human primary oral fibroblast cells. Replication of EV-A71, CV-A16 and CVA10 were effectively inhibited at 2 hours post-infection (hpi) to 72 hpi, except for CV-A6 which was only at 2 hpi. S2 also has virucidal activity against EV-A71. Polysaccharides isolated and purified from crude hot aqueous extract demonstrated similar antiviral activity as S2, suggesting that polysaccharides could be one of the active compounds responsible for the antiviral activity shown by S2. To our knowledge, this study demonstrates for the first time the ability of GNJI to inhibit enterovirus infection and replication. Thus, GNJI is potential to be further developed as an antiviral agent against enteroviruses that caused HFMD
Antibodies against endogenous retroviruses promote lung cancer immunotherapy
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response
Why Singapore's land transportation energy consumption is relatively low
Natural Resources Forum252135-14
Forecasting of diesel and petrol sales an evaluation of various marketing strategies
Energy Policy183246-254ENPY
Screening for neonatal hip instability in an asian population. an evaluation of the first 5 years
Journal of Musculoskeletal Research3133-37JMUR
Dimension reduction using evolutionary support vector machines
10.1109/CEC.2008.46312902008 IEEE Congress on Evolutionary Computation, CEC 20083634-364
- …