20 research outputs found

    Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure

    Get PDF
    Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinant

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Computational Analysis of Routine Biopsies Improves Diagnosis and Prediction of Cardiac Allograft Vasculopathy.

    No full text
    Cardiac allograft vasculopathy (CAV) is a leading cause of morbidity and mortality for heart transplant recipients. Although clinical risk factors for CAV have been established, no personalized prognostic test exists to confidently identify patients at high versus low risk of developing aggressive CAV. This investigation aimed to leverage computational methods for analyzing digital pathology images from routine endomyocardial biopsies (EMBs) to develop a precision medicine tool for predicting CAV years before overt clinical presentation. Clinical data from 1 year after transplant were collected on 302 transplant recipients from the University of Pennsylvania, including 53 patients with early-onset CAV and 249 no early-onset CAV controls. These data were used to generate a clinical model (Clinical Risk Factor Future Cardiac Allograft Vasculopathy Prediction Model [ClinCAV-Pr]) for predicting future CAV development. From this cohort, 183 archived EMBs were collected for CD31 and modified trichrome staining and then digitally scanned. These included 1-year posttransplant EMBs from 50 patients with early-onset CAV and 82 patients with no early-onset CAV, as well as 51 EMBs from disease control patients obtained at the time of definitive coronary angiography confirming CAV. Using biologically inspired, handcrafted features extracted from digitized EMBs, quantitative histological models for differentiating no early-onset CAV from disease controls (Histological Cardiac Allograft Vasculopathy Diagnostic Model [HistoCAV-Dx]) and for predicting future CAV from 1-year posttransplant EMBs were developed (Histological Future Cardiac Allograft Vasculopathy Prediction Model [HistoCAV-Pr]). The performance of histological and clinical models for predicting future CAV (ie, HistoCAV-Pr and ClinCAV-Pr, respectively) were compared in a held-out validation set before being combined to assess the added predictive value of an integrated predictive model (Integrated Histological/Clinical Risk Factor Future Cardiac Allograft Vasculopathy Prediction Model [iCAV-Pr]). ClinCAV-Pr achieved modest performance on the independent test set, with an area under the receiver operating curve (AUROC) of 0.70. The HistoCAV-Dx model for diagnosing CAV achieved excellent discrimination, with an AUROC of 0.91, whereas the HistoCAV-Pr model for predicting CAV achieved good performance with an AUROC of 0.80. The integrated iCAV-Pr model achieved excellent predictive performance, with an AUROC of 0.93 on the held-out test set. Prediction of future CAV development is greatly improved by incorporation of computationally extracted histological features. These results suggest morphological details contained within regularly obtained biopsy tissue have the potential to enhance precision and personalization of treatment plans for patients after heart transplant

    <em>In vivo</em> label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system.

    Get PDF
    Existing clinical intravascular imaging modalities are not capable of accurate detection of critical plaque pathophysiology in the coronary arteries. This study reports the first intravascular catheter combining intravascular ultrasound (IVUS) with multispectral fluorescence lifetime imaging (FLIm) that enables label-free simultaneous assessment of morpho logical and biochemical features of coronary vessels in vivo. A 3.7 Fr catheter with a fiber-optic channel was constructed based on a 40 MHz clinical IVUS catheter. The ability to safely acquire co-registered FLIm-IVUS data in vivo using Dextran40 solution flushing was demonstrated in swine coronary arteries. FLIm parameters from the arterial wall were consistent with the emission of fluorophores present in healthy arterial wall (collagen, elastin). Additionally, structural and biochemical features from atherosclerotic lesions were acquired in ex vivo human coronary samples and corroborated with histological findings. Current results show that FLIm parameters linked to the amount of structural proteins (e.g. collagen, elastin) and lipids (e.g. foam cells, extracellular lipids) in the first 200 &mu;m of the intima provide important biochemical information that can supplement IVUS data for a comprehensive assessment of plaques pathophysiology. The unique FLIm-IVUS system evaluated here has the potential to provide a comprehensive insight into atherosclerotic lesion formation, diagnostics and response to therapy

    Hyperamylinemia Increases IL-1beta Synthesis in the Heart via Peroxidative Sarcolemmal Injury

    No full text
    Hypersecretion of amylin is common in individuals with prediabetes, causes amylin deposition and proteotoxicity in pancreatic islets, and contributes to the development of type 2 diabetes. Recent studies also identified amylin deposits in failing hearts from patients with obesity or type 2 diabetes and demonstrated that hyperamylinemia accelerates the development of heart dysfunction in rats expressing human amylin in pancreatic beta-cells (HIP rats). To further determine the impact of hyperamylinemia on cardiac myocytes, we investigated human myocardium, compared diabetic HIP rats with diabetic rats expressing endogenous (nonamyloidogenic) rat amylin, studied normal mice injected with aggregated human amylin, and developed in vitro cell models. We found that amylin deposition negatively affects cardiac myocytes by inducing sarcolemmal injury, generating reactive aldehydes, forming amylin-based adducts with reactive aldehydes, and increasing synthesis of the proinflammatory cytokine interleukin-1beta (IL-1beta) independently of hyperglycemia. These results are consistent with the pathological role of amylin deposition in the pancreas, uncover a novel contributing mechanism to cardiac myocyte injury in type 2 diabetes, and suggest a potentially treatable link of type 2 diabetes with diabetic heart disease. Although further studies are necessary, these data also suggest that IL-1beta might function as a sensor of myocyte amylin uptake and a potential mediator of myocyte injury
    corecore