16 research outputs found

    Effect of the steady flow on spatial damping of small-amplitude prominence oscillations

    Get PDF
    Aims. Taking account of steady flow in solar prominences, we study its effects on spatial damping of small-amplitude non-adiabatic magnetoacoustic waves in a homogeneous, isothermal, and unbounded prominence plasma. Methods. We model the typical feature of observed damped oscillatory motion in prominences, removing the adiabaticity assumption through thermal conduction, radiation and heating. Invoking steady flow in MHD equations, we linearise them under small-amplitude approximation and obtain a new general dispersion relation for linear non-adiabatic magnetoacoustic waves in prominences Results. The presence of steady flow breaks the symmetry of forward and backward propagating MHD wave modes in prominences. The steady flow has dramatic influence on the propagation and damping of magnetoacoustic and thermal waves. Depending upon the direction and strength of flow the magnetoacoustic and thermal modes can show both the features of wave amplification and damping. At the wave period of 5 min where the photospheric power is maximum, the slow mode shows wave amplification. However, in the absence of steady flow the slow mode wave shows damping. Conclusions. For the wave period between 5 min and 15 min, the amplification length for slow mode, in the case of prominence regime 1.1, varies between 3.4*10^11 m to 2*10^12 m. Dramatic influence of steady flow on small-amplitude prominence oscillations is likely to play an important role in both wave detection and prominence seismology

    Magneto-Acoustic Wave Oscillations in Solar Spicules

    Full text link
    Some observations suggest that solar spicules show small amplitude and high frequency oscillations of magneto-acoustic waves, which arise from photospheric granular forcing. We apply the method of MHD seismology to determine the period of kink waves. For this purposes, the oscillations of a magnetic cylinder embedded in a field-free environment is investigated. Finally, diagnostic diagrams displaying the oscillatory period in terms of some equilibrium parameters are provided to allow a comparison between theoretical results and those coming from observations.Comment: 10 pages, 4 fig

    Fractal Reconnection in Solar and Stellar Environments

    Full text link
    Recent space based observations of the Sun revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Often the magnetic reconnection events are associated with mass ejections or jets, which seem to be closely related to multiple plasmoid ejections from fractal current sheet. The bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. We shall discuss recent observations and theories related to the plasmoid-induced-reconnection and the fractal reconnection in solar flares, and their implication to reconnection physics and particle acceleration. Recent findings of many superflares on solar type stars that has extended the applicability of the fractal reconnection model of solar flares to much a wider parameter space suitable for stellar flares are also discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016), 33 pages, 18 figure

    Waves in the Sun

    No full text

    Electromagneto Statics

    No full text
    corecore