18,117 research outputs found
Anisotropic strains and magnetoresistance of La_{0.7}Ca_{0.3}MnO_{3}
Thin films of perovskite manganite La_{0.7}Ca_{0.3}MnO_{3} were grown
epitaxially on SrTiO_3(100), MgO(100) and LaAlO_3(100) substrates by the pulsed
laser deposition method. Microscopic structures of these thin film samples as
well as a bulk sample were fully determined by x-ray diffraction measurements.
The unit cells of the three films have different shapes, i.e., contracted
tetragonal, cubic, and elongated tetragonal for SrTiO_3, MgO, and LaAlO_3
cases, respectively, while the unit cell of the bulk is cubic. It is found that
the samples with cubic unit cell show smaller peak magnetoresistance than the
noncubic ones do. The present result demonstrates that the magnetoresistance of
La_{0.7}Ca_{0.3}MnO_{3} can be controlled by lattice distortion via externally
imposed strains.Comment: Revtex, 10 pages, 2 figure
Resonant x-ray scattering study on multiferroic BiMnO3
Resonant x-ray scattering is performed near the Mn K-absorption edge for an
epitaxial thin film of BiMnO3. The azimuthal angle dependence of the resonant
(003) peak (in monoclinic indices) is measured with different photon
polarizations; for the channel a 3-fold symmetric oscillation
is observed in the intensity variation, while the scattering
intensity remains constant. These features are accounted for in terms of the
peculiar ordering of the manganese 3d orbitals in BiMnO3. It is demonstrated
that the resonant peak persists up to 770 K with an anomaly around 440 K; these
high and low temperatures coincide with the structural transition temperatures,
seen in bulk, with and without a symmetry change, respectively. A possible
relationship of the orbital order with the ferroelectricity of the system is
discussed.Comment: 14 pages, 4 figure
Two Circular-Rotational Eigenmodes in Vortex Gyrotropic Motions in Soft Magnetic Nanodots
We found, by micromagnetic numerical and analytical calculations, that the
clockwise (CW) and counterclockwise (CCW) circular-rotational motions of a
magnetic vortex core in a soft magnetic circular nanodot are the elementary
eigenmodes existing in the gyrotropic motion with respect to the corresponding
CW and CCW circular-rotational-field eigenbasis. Any steady-state vortex
gyrotropic motions driven by a linearly polarized oscillating in-plane magnetic
field in the linear regime can be perfectly understood according to the
superposition of the two circular eigenmodes, which show asymmetric resonance
characteristics reflecting the vortex polarization. The relative magnitudes in
the amplitude and phase between the CCW and CW eigenmodes determine the
elongation and orientation of the orbital trajectories of the vortex core
motions, respectively, which trajectories vary with the polarization and
chirality of the given vortex as well as the field frequency across the
resonance frequency.Comment: 30 pages, 7 figure
Metabolite essentiality elucidates robustness of Escherichia coli metabolism
Complex biological systems are very robust to genetic and environmental
changes at all levels of organization. Many biological functions of Escherichia
coli metabolism can be sustained against single-gene or even multiple-gene
mutations by using redundant or alternative pathways. Thus, only a limited
number of genes have been identified to be lethal to the cell. In this regard,
the reaction-centric gene deletion study has a limitation in understanding the
metabolic robustness. Here, we report the use of flux-sum, which is the
summation of all incoming or outgoing fluxes around a particular metabolite
under pseudo-steady state conditions, as a good conserved property for
elucidating such robustness of E. coli from the metabolite point of view. The
functional behavior, as well as the structural and evolutionary properties of
metabolites essential to the cell survival, was investigated by means of a
constraints-based flux analysis under perturbed conditions. The essential
metabolites are capable of maintaining a steady flux-sum even against severe
perturbation by actively redistributing the relevant fluxes. Disrupting the
flux-sum maintenance was found to suppress cell growth. This approach of
analyzing metabolite essentiality provides insight into cellular robustness and
concomitant fragility, which can be used for several applications, including
the development of new drugs for treating pathogens.Comment: Supplements available at
http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd
20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal
A superconducting transition temperature Tc as high as 100 K was recently
discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery
immediately ignited efforts to identify the mechanism for the dramatically
enhanced Tc from its bulk value of 7 K. Currently, there are two main views on
the origin of the enhanced Tc; in the first view, the enhancement comes from an
interfacial effect while in the other it is from excess electrons with strong
correlation strength. The issue is controversial and there are evidences that
support each view. Finding the origin of the Tc enhancement could be the key to
achieving even higher Tc and to identifying the microscopic mechanism for the
superconductivity in iron-based materials. Here, we report the observation of
20 K superconductivity in the electron doped surface layer of FeSe. The
electronic state of the surface layer possesses all the key spectroscopic
aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer
state is found to have a moderate Tc of 20 K with a smaller gap opening of 4
meV. Our results clearly show that excess electrons with strong correlation
strength alone cannot induce the maximum Tc, which in turn strongly suggests
need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure
Slow relaxation in the Ising model on a small-world network with strong long-range interactions
We consider the Ising model on a small-world network, where the long-range
interaction strength is in general different from the local interaction
strength , and examine its relaxation behaviors as well as phase
transitions. As is raised from zero, the critical temperature also
increases, manifesting contributions of long-range interactions to ordering.
However, it becomes saturated eventually at large values of and the
system is found to display very slow relaxation, revealing that ordering
dynamics is inhibited rather than facilitated by strong long-range
interactions. To circumvent this problem, we propose a modified updating
algorithm in Monte Carlo simulations, assisting the system to reach equilibrium
quickly.Comment: 5 pages, 5 figure
- …