37,021 research outputs found

    Hardcore bosons on checkerboard lattices near half filling: geometric frustration, vanishing charge order and fractional phase

    Full text link
    We study a spinless hardcore boson model on checkerboard lattices by Green function Monte Carlo method. At half filling, the ground state energy is obtained up to 28×2828\times 28 lattice and extrapolated to infinite size, the staggered pseudospin magnetization is found to vanish in the thermodynamic limit. Thus the (π,π)(\pi,\pi) charge order is absent in this system. Away from half filling, two defects induced by each hole (particle) may carry fractional charge (±e/2\pm e/2). For one hole case, we study how the defect-defect correlation changes with t/Jt/J, which is the ratio between the hopping integral and cyclic exchange, equals to V/2tV/2t when V≫tV\gg t. Moreover, we argue that these fractional defects may propagate independently when the concentration of holes (or defects) is large enough

    The structure of the magnetic reconnection exhaust boundary

    Full text link
    The structure of shocks that form at the exhaust boundaries during collisionless reconnection of anti-parallel fields is studied using particle-in-cell (PIC) simulations and modeling based on the anisotropic magnetohydrodynamic equations. Large-scale PIC simulations of reconnection and companion Riemann simulations of shock development demonstrate that the pressure anisotropy produced by counterstreaming ions within the exhaust prevents the development of classical Petschek switch-off-slow shocks (SSS). The shock structure that does develop is controlled by the firehose stability parameter epsilon=1-mu_0(P_parallel-P_perpendicular)/ B^2 through its influence on the speed order of the intermediate and slow waves. Here P_parallel and P_perpendicular are the pressure parallel and perpendicular to the local magnetic field. The exhaust boundary is made up of a series of two shocks and a rotational wave. The first shock takes epsilon from unity upstream to a plateau of 0.25 downstream. The condition epsilon =0.25 is special because at this value the speeds of nonlinear slow and intermediate waves are degenerate. The second slow shock leaves epsilon=0.25 unchanged but further reduces the amplitude of the reconnecting magnetic field. Finally, in the core of the exhaust epsilon drops further and the transition is completed by a rotation of the reconnecting field into the out-of-plane direction. The acceleration of the exhaust takes place across the two slow shocks but not during the final rotation. The result is that the outflow speed falls below that expected from the Walen condition based on the asymptotic magnetic field. A simple analytic expression is given for the critical value of epsilon within the exhaust below which SSSs no longer bound the reconnection outflow.Comment: 13 pages, 5 figure

    Comment on ``Validity of certain soft-photon amplitudes''

    Get PDF
    The criteria suggested by Welsh and Fearing (nucl-th/9606040) to judge the validity of certain soft-photon amplitudes are examined. We comment on aspects of their analysis which lead to incorrect conclusions about published amplitudes and point out important criteria which were omitted from their analysis.Comment: 6 pages plus 1 postscript figure, Revte

    Directional `superradiant' collisions: bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate

    Full text link
    We study spontaneous directionality in the bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate (BEC), an effect analogous to `superradiant' emission of atom-photon pairs. Using a simplified model, we make analytic predictions regarding directional effects for both atom-atom and atom-photon emission. These are confirmed by numerical mean-field simulations, demonstrating the the feasibility of nearly perfect directional emission along the condensate axis. The dependence of the emission angle on the pump strength for atom-atom pairs is significantly different than for atom-photon pairs

    Tunnelling Effect and Hawking Radiation from a Vaidya Black Hole

    Get PDF
    In this paper, we extend Parikh' work to the non-stationary black hole. As an example of the non-stationary black hole, we study the tunnelling effect and Hawking radiation from a Vaidya black hole whose Bondi mass is identical to its mass parameter. We view Hawking radiation as a tunnelling process across the event horizon and calculate the tunnelling probability. We find that the result is different from Parikh's work because drHdv\frac{dr_{H}}{dv} is the function of Bondi mass m(v)

    The temperature dependence of the local tunnelling conductance in cuprate superconductors with competing AF order

    Full text link
    Based on the t−t′−U−Vt-t'-U-V model with proper chosen parameters for describing the cuprate superconductors, it is found that near the optimal doping at low temperature (TT), only the pure d-wave superconductivity (ddSC) prevails and the antiferromagnetic (AF) order is completely suppressed. At higher TT, the AF order with stripe modulation and the accompanying charge order may emerge, and they could exist above the ddSC transition temperature. We calculate the local differential tunnelling conductance (LDTC) from the local density of states (LDOS) and show that their energy variations are rather different from each other as TT increases. Although the calculated modulation periodicity in the LDTC/LDOS and bias energy dependence of the Fourier amplitude of LDTC in the "pseudogap" region are in good agreement with the recent STM experiment [Vershinin etal.et al., Science {\bf 303}, 1995 (2004)], we point out that some of the energy dependent features in the LDTC do not represent the intrinsic characteristics of the sample
    • …
    corecore