27 research outputs found

    Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells.

    Get PDF
    Follicular helper T (TFH) cells are expanded in systemic lupus erythematosus, where they are required to produce high affinity autoantibodies. Eliminating TFH cells would, however compromise the production of protective antibodies against viral and bacterial pathogens. Here we show that inhibiting glucose metabolism results in a drastic reduction of the frequency and number of TFH cells in lupus-prone mice. However, this inhibition has little effect on the production of T-cell-dependent antibodies following immunization with an exogenous antigen or on the frequency of virus-specific TFH cells induced by infection with influenza. In contrast, glutaminolysis inhibition reduces both immunization-induced and autoimmune TFH cells and humoral responses. Solute transporter gene signature suggests different glucose and amino acid fluxes between autoimmune TFH cells and exogenous antigen-specific TFH cells. Thus, blocking glucose metabolism may provide an effective therapeutic approach to treat systemic autoimmunity by eliminating autoreactive TFH cells while preserving protective immunity against pathogens

    Pathogenesis and therapeutic interventions for ANCA-associated vasculitis.

    Get PDF
    Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) affects systemic small vessels and is accompanied by the presence of ANCAs in the serum. This disease entity includes microscopic polyangiitis, granulomatosis with polyangiitis, eosinophilic granulomatosis with polyangiitis and drug-induced AAV. Similar to other autoimmune diseases, AAV develops in patients with a predisposing genetic background who have been exposed to causative environmental factors. The mechanism by which ANCAs cause vasculitis involves ANCA-mediated excessive activation of neutrophils that subsequently release inflammatory cytokines, reactive oxygen species and lytic enzymes. In addition, this excessive activation of neutrophils by ANCAs induces formation of neutrophil extracellular traps (NETs). Although NETs are essential elements in innate immunity, excessive NET formation is harmful to small vessels. Moreover, NETs are involved not only in ANCA-mediated vascular injury but also in the production of ANCAs themselves. Therefore, a vicious cycle of NET formation and ANCA production is considered to be involved in the pathogenesis of AAV. In addition to this role of NETs in AAV, some other important discoveries have been made in the past few years. Incorporating these new insights into our understanding of the pathogenesis of AAV is needed to fully understand and ultimately overcome this disease

    The impact of conventional DMARD and biological therapies on CD4+ cell subsets in rheumatoid arthritis: a follow-up study.

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune disease characterized by abnormal prevalence of Th1, Th2, Th17, and regulatory (Treg) subsets. Some data suggest that these subsets are influenced by anti-RA agents. Follow-up studies monitoring T cell phenotype in response to therapy are limited. We investigated the alteration of CD4+ T cell subset distribution after the initiation of disease-modifying antirheumatic drug (DMARD) (with glucocorticosteroid (GCS) and methotrexate (MTX)) and anti-TNFalpha therapy. We enrolled 19 treatment naive (early) RA patients and initiated GCS (in a dose of 16 mg/day for 4 weeks; then 8 mg/day). MTX, 10 mg/week, was started at week 4. We also enrolled 32 RA patients unresponsive to DMARD and initiated anti-TNFalpha therapy: adalimumab (ADA), 40 mg/2 weeks, n = 12; etanercept (ETA), 50 mg/weeks, n = 12; or infliximab (IFX) on week 0, 2, and 6, 3 mg/kg bw, n = 8. Blood was taken before and 4 and 8 weeks after the initiation of therapy. Ten volunteers served as controls. The T cell phenotype was assessed with flow cytometry. In early RA, Th1, Th2, and Th17 prevalence was higher, while Treg prevalence was lower than normal. GCS alone decreased Th2 prevalence. GCS + MTX decreased Th17 prevalence. Immune phenotype in unresponsive RA before anti-TNF therapy was as in early RA. Four and 8 weeks after initiating anti-TNF therapy, Th1 prevalence was higher than baseline in ETA or IFX, while it was stable in ADA groups. Th2 prevalence was higher than normal in ADA or IFX, while normalized in ETA group. In each group, Treg prevalence increased, while Th17 prevalence was at the baseline. The proinflammatory immune phenotype is normalized only under GCS + MTX combination in early RA. Anti-TNFalpha therapy exhibit marked effects on all the cell populations investigated (except Th17); some slight differences in this action exist between ADA, ETA, and IFX therapy
    corecore