11,755 research outputs found
Learning how to do things with imitation
In this paper we discuss how agents can learn to do things by imitating other agents. Especially we look at how the use of different metrics and sub-goal granularity can affect the imitation results. We use a computer model of a chess world as a test-bed to also illustrate issues that arise when there is dissimilar embodiment between the demonstrator and the imitator agents
Achieving Corresponding Effects on Multiple Robotic Platforms: Imitating in Context Using Different Effect Metrics
Original paper can be found at: www.aisb.org.uk/publications/proceedings/aisb05/3_Imitation_Final.pdfOne of the fundamental problems in imitation is the correspondence problem, how to map between the actions, states and effects of the model and imitator agents, when the embodiment of the agents is dissimilar. In our approach, the matching is according to different metrics and granularity. This paper presents JABBERWOCKY, a system that uses captured data from a human demonstrator to generate appropriate action commands, addressing the correspondence problem in imitation. Towards a characterization of the space of effect metrics, we are exploring absolute/relative angle and displacement aspects and focus on the overall arrangement and trajectory of manipulated objects. Using as an example a captured demonstration from a human, the system produces a correspondence solution given a selection of effect metrics and starting from dissimilar initial object positions, producing action commands that are then executed by two imitator target platforms (in simulation) to successfully imitate
Developing social action capabilities in a humanoid robot using an interaction history architecture
âThis material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." âCopyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.â DOI: 10.1109/ICHR.2008.4756013We present experimental results for the humanoid robot Kaspar2 engaging in a simple âpeekabooâ interaction game with a human partner. The robot develops the capability to engage in the game by using its history of interactions coupled with audio and visual feedback from the interaction partner to continually generate increasingly appropriate behaviour. The robot also uses facial expressions to feedback its level of reward to the partner. The results support the hypothesis that reinforcement of time-extended experiences through interaction allows a robot to act appropriately in an interaction
Robot Self-Characterisation of Experience Using Trajectories in Sensory-Motor Phase Space
Peer reviewe
An empirical framework for human-robot proxemics
The work described in this paper was conducted within the EU Integrated Projects COGNIRON ("The Cognitive Robot Companion") and LIREC (LIving with Robots and intEractive Companions) and was funded by the European Commission under contract numbers FP6- 002020 and FP7-215554.An empirical framework for Human-Robot (HR) proxemics is proposed which shows how the measurement and control of interpersonal distances between a human and a robot can be potentially used by the robot to interpret, predict and manipulate proxemic behaviour for Human-Robot Interactions (HRIs). The proxemic framework provides for incorporation of inter-factor effects, and can be extended to incorporate new factors, updated values and results. The framework is critically discussed and future work proposed
The Intertidal fish fauna of the west coast of South Africa â species, community and biogeographic patterns
In the first quantitative survey of intertidal fish from the South African west coast 62 intertidal rock pools were sampled at two sites, using the ichthyocide rotenone. A total of 2 022 fish representing 14 species belonging to only two families â the Clinidae (88â98% by number) and the Gobiesocidae (12â2%) â were caught. Clinus superciliosus, C. heterodon and the gobiesocid Chorisochismus dentex were the most abundant species in terms of both numbers and biomass. Vertical zonation of individual species on the shore indicated little separation of the habitat between species, although some species exhibited size-specific partitioning of the shore. Relationships between fish distribution and abundance and rock pool characteristics were elucidated by means of stepwise multiple regression, both at the whole community and individual species levels. The abundances of individual species were best predicted by pool size, although some species also showed an association with weed cover. For the community as a whole, the number of species present, the total number of fish and the total biomass in any pool were all dependent on pool size, height above LWS and amount of available cover. Relative to other South African sites the west coast has a low diversity of intertidal fish, combined with a high degree of dominance and a low level of habitat separation
Cosmological perturbations in a family of deformations of general relativity
We study linear cosmological perturbations in a previously introduced family
of deformations of general relativity characterized by the absence of new
degrees of freedom. The homogeneous and isotropic background in this class of
theories is unmodified and is described by the usual Friedmann equations. The
theory of cosmological perturbations is modified and the relevant deformation
parameter has the dimension of length. Gravitational perturbations of the
scalar type can be described by a certain relativistic potential related to the
matter perturbations just as in general relativity. A system of differential
equations describing the evolution of this potential and of the stress-energy
density perturbations is obtained. We find that the evolution of scalar
perturbations proceeds with a modified effective time-dependent speed of sound,
which, contrary to the case of general relativity, does not vanish even at the
matter-dominated stage. In a broad range of values of the length parameter
controlling the deformation, a specific transition from the regime of modified
gravity to the regime of general relativity in the evolution of scalar
perturbations takes place during the radiation domination. In this case, the
resulting power spectrum of perturbations in radiation and dark matter is
suppressed on the comoving spatial scales that enter the Hubble radius before
this transition. We estimate the bounds on the deformation parameter for which
this suppression does not lead to observable consequences. Evolution of scalar
perturbations at the inflationary stage is modified but very slightly and the
primordial spectrum generated during inflation is not noticeably different from
the one obtained in general relativity.Comment: 45 pages, version published in JCAP; minor changes, one section moved
to the appendi
- âŠ