50 research outputs found

    Myelofibrosis involving lymph node: a novel cytogenetic abnormality in a mimicker of mesenchymal neoplasm

    Get PDF
    A case of primary myelofibrosis involving lymph node and with a novel cytogenetic abnormality [del (18) (p11.2-3)] is reported. The abnormalities are identical among specimens from the lymph node, peripheral blood, and bone marrow that were analyzed years apart. Additionally, we show that the infiltrate by dysplastic megakaryocytes in the lymph node morphologically mimics a metastatic mesenchymal neoplasm, even when the clinical history myelofibrosis was known

    Co-occurrence of outlet impingement syndrome of the shoulder and restricted range of motion in the thoracic spine - a prospective study with ultrasound-based motion analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shoulder complaints, and especially the outlet-impingement syndrome, are a common condition. Among other things, poor posture has been discussed as a cause. A correlation between impingement syndrome and restricted mobility of the thoracic spine (T) has been described earlier, but there has been no motion analysis of the thoracic spine to show these correlations. In the present prospective study, we intended to find out whether there is a significant difference in the thoracic sagittal range of motion (ROM) between patients with a shoulder outlet impingement syndrome and a group of patients who had no shoulder pathology. Secondly, we wanted to clarify whether Ott's sign correlates with ultrasound topometric measurements.</p> <p>Methods</p> <p>Two sex- and age-matched groups (2 × n = 39) underwent a clinical and an ultrasound topometric examination. The postures examined were sitting up straight, sitting in maximal flexion and sitting in maximal extension. The disabilities of the arm, shoulder and hand (DASH) score (obtained by means of a self-assessment questionnaire) and the Constant score were calculated. Lengthening and shortening of the dorsal projections of the spine in functional positions was measured by tape with Ott's sign.</p> <p>Results</p> <p>On examination of the thoracic kyphosis in the erect seated posture there were no significant differences between the two groups (p = 0.66). With ultrasound topometric measurement it was possible to show a significantly restricted segmental mobility of the thoracic spine in the study group compared with the control group (p = 0.01). An in-depth look at the mobility of the subsegments T1-4, T5-8 and T9-12 revealed that differences between the groups in the mobility in the lower two sections of the thoracic spine were significant (T5-8: p = 0.03; T9-12: p = 0.02). The study group had an average Constant score of 35.1 points and the control group, 85.5 (p < 0.001). On the DASH score the patient group reached 34.2 points and the control group, 1.4 (p < 0.001). The results of Ott's sign differed significantly between the two collectives (p = 0.0018), but showed a weak correlation with the ultrasound topometric measurements (study group flexion/extension: r = 0.36/0.43, control group flexion/extension: r = 0.29/0.26).</p> <p>Conclusion</p> <p>The mobility of the thoracic spine should receive more attention in the diagnosis and therapy of patients with shoulder outlet impingement syndrome.</p

    Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: Up to 12-month follow-up study in a goat model

    Get PDF
    The regeneration of articular hyaline cartilage remains an elusive goal despite years of research. Recently, an aragonite-hyaluronate (Ar-HA) biphasic scaffold has been described capable of cartilage regeneration over a 6-month follow-up period. This study was conducted in order to assess the fate of the regenerated osteochondral tissue in a 12-month-long validated caprine model

    Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model

    No full text
    PURPOSE: The objective of this study was to examine whether different mechanical modifications and/or impregnation of hyaluronic acid (HA) might enhance aragonite-based scaffold properties for the regeneration of cartilage and bone in an animal model. METHODS: Bi-phasic osteochondral scaffolds were prepared using coralline aragonite with different modifications, including 1- to 2-mm-deep drilled channels in the cartilage phase (Group 1, n = 7) or in the bone phase (Group 2, n = 8), and compared with unmodified coral cylinders (Group 3, n = 8) as well as empty control defects (Group 4, n = 4). In each group, four of the implants were impregnated with HA to the cartilage phase. Osteochondral defects (6 mm diameter, 8 mm depth) were made in medial and lateral femoral condyles of 14 goats, and the scaffolds were implanted according to a randomization chart. After 6 months, cartilage and bone regeneration were evaluated macroscopically and histologically by an external laboratory. RESULTS: Group 1 implants were replaced by newly formed hyaline cartilage and subchondral bone (combined histological evaluation according to the ICRS II-2010 and O'Driscoll et al. 34 \ub1 4 n = 7). In this group, the cartilaginous repair tissue showed a smooth contour and was well integrated into the adjacent native cartilage, with morphological evidence of hyaline cartilage as confirmed by the marked presence of proteoglycans, a marked grade of collagen type II and the absence of collagen type I. The average scores in other groups were significantly lower (Group 2 (n = 8) 28.8 \ub1 11, Group 3 (n = 8) 23 \ub1 9 and Group 4 (empty control, n = 4) 19.7 \ub1 15). CONCLUSIONS: The implants with the mechanical modification and HA impregnation in the cartilage phase outperformed all other types of implant. Although native coral is an excellent material for bone repair, as a stand-alone material implant, it does not regenerate hyaline cartilage. Mechanical modification with drilled channels and impregnation of HA within the coral pores enhanced the scaffold's cartilage regenerative potential. The modified implant shows young hyaline cartilage regeneration. This implant might be useful for the treatment of both chondral and osteochondral defects in humans
    corecore