153 research outputs found

    Commissioning of large vacuum systems

    Get PDF
    This paper will give an overview of the various steps of the commissioning of large vacuum systems for accelerators. Following some introductory remarks, the pump-down, leak check, bake-out as well as component, interlock, and safety checks will be covered in detail. Special emphasis will be given to beam vacuum systems in combination with cryogenic systems. Finally, the transition from the commissioning phase to beam operation will be treated. Practical examples will illustrate most of the topics

    Particle Free Pump Down and Venting of UHV Vacuum Systems

    Get PDF
    Abstract Vacuum systems containing superconducting cavities which have to be operated at high gradients need to preserve the cleanliness of the superconducting cavity surfaces. In addition to an adequate preparation of the cavities and the neighbouring vacuum components special care needs to be taken during pump down and venting. Neither should be particles introduced into the vacuum system, nor should particles already present within the system be moved towards critical areas. For the superconducting linear accelerators of FLASH and the European XFEL at DESY a series of measurements have been performed to study the movement of particles in long tubes during pump down and venting. For this purpose an in-situ vacuum particle counter has been used. By reducing and varying the gas flow during these processes, it is possible to perform these actions without moving particles present inside such systems. Based on these measurements a set-up using various filters, flow controllers and a pressure gauge has been developed to avoid introducing particles into the vacuum system as well as moving existing particles. This set-up allows automated pump-down and venting of critical vacuum systems in a reliable and reproducible way, being much faster than the procedures used so far

    A surprising method for polarising antiprotons

    Full text link
    We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to v/c0.002v/c \approx 0.002 the cross section for spin-flip is as large as about 210132 \cdot 10^{13} barn as shown by new QED-calculations of the triple spin-cross sections. Two possibilities for providing a positron source with sufficient flux density are presented. A polarised positron beam with a polarisation of 0.70 and a flux density of approximately 1.510101.5 \cdot 10^{10}/(mm2^2 s) appears to be feasible by means of a radioactive 11^{11}C dc-source. A more involved proposal is the production of polarised positrons by pair production with circularly polarised photons. It yields a polarisation of 0.76 and requires the injection into a small storage ring. Such polariser sources can be used at low (100 MeV) as well as at high (1 GeV) energy storage rings providing a time of about one hour for polarisation build-up of about 101010^{10} antiprotons to a polarisation of about 0.18. A comparison with other proposals show a gain in the figure-of-merit by a factor of about ten.Comment: 13 pages, 8 figures; v2: minor language and signification corrections v3: (14 pages, 12 figures) major error, nonapplicable polarisation transfer cross sections replaced by the mandatory spin-flip cross section

    Nonperiodic echoes from mushroom billiard hats

    Full text link
    Mushroom billiards have the remarkable property to show one or more clear cut integrable islands in one or several chaotic seas, without any fractal boundaries. The islands correspond to orbits confined to the hats of the mushrooms, which they share with the chaotic orbits. It is thus interesting to ask how long a chaotic orbit will remain in the hat before returning to the stem. This question is equivalent to the inquiry about delay times for scattering from the hat of the mushroom into an opening where the stem should be. For fixed angular momentum we find that no more than three different delay times are possible. This induces striking nonperiodic structures in the delay times that may be of importance for mesoscopic devices and should be accessible to microwave experiments.Comment: Submitted to Phys. Rev. E without the appendi

    A Method to Polarize Stored Antiprotons to a High Degree

    Get PDF
    Polarized antiprotons can be produced in a storage ring by spin--dependent interaction in a purely electron--polarized hydrogen gas target. The polarizing process is based on spin transfer from the polarized electrons of the target atoms to the orbiting antiprotons. After spin filtering for about two beam lifetimes at energies T40170T\approx 40-170 MeV using a dedicated large acceptance ring, the antiproton beam polarization would reach P=0.20.4P=0.2-0.4. Polarized antiprotons would open new and unique research opportunities for spin--physics experiments in pˉp\bar{p}p interactions

    Open Mushrooms: Stickiness revisited

    Full text link
    We investigate mushroom billiards, a class of dynamical systems with sharply divided phase space. For typical values of the control parameter of the system ρ\rho, an infinite number of marginally unstable periodic orbits (MUPOs) exist making the system sticky in the sense that unstable orbits approach regular regions in phase space and thus exhibit regular behaviour for long periods of time. The problem of finding these MUPOs is expressed as the well known problem of finding optimal rational approximations of a real number, subject to some system-specific constraints. By introducing a generalized mushroom and using properties of continued fractions, we describe a zero measure set of control parameter values ρ(0,1)\rho\in(0,1) for which all MUPOs are destroyed and therefore the system is less sticky. The open mushroom (billiard with a hole) is then considered in order to quantify the stickiness exhibited and exact leading order expressions for the algebraic decay of the survival probability function P(t)P(t) are calculated for mushrooms with triangular and rectangular stems.Comment: 21 pages, 11 figures. Includes discussion of a three-dimensional mushroo

    Machine studies for the development of storage cells at the ANKE facility of COSY

    Full text link
    We present a measurement of the transverse intensity distributions of the COSY proton beam at the target interaction point at ANKE at the injection energy of 45 MeV, and after acceleration at 2.65 GeV. At 2.65 GeV, the machine acceptance was determined as well. From the intensity distributions the beam size is determined, and together with the measured machine acceptance, the dimensions of a storage cell for the double-polarized experiments with the polarized internal gas target at the ANKE spectrometer are specified. An optimum storage cell for the ANKE experiments should have dimensions of 15mm x 20mm x 390mm (vertical x horizontal x longitudinal), whereby a luminosity of about 2.5*10^29 cm^-2*s^-1 with beams of 10^10 particles stored in COSY could be reached.Comment: 18 pages, 13 figures, 4 table

    Beam-Induced Nuclear Depolarisation in a Gaseous Polarised Hydrogen Target

    Get PDF
    Spin-polarised atomic hydrogen is used as a gaseous polarised proton target in high energy and nuclear physics experiments operating with internal beams in storage rings. When such beams are intense and bunched, this type of target can be depolarised by a resonant interaction with the transient magnetic field generated by the beam bunches. This effect has been studied with the HERA positron beam in the HERMES experiment at DESY. Resonances have been observed and a simple analytic model has been used to explain their shape and position. Operating conditions for the experiment have been found where there is no significant target depolarisation due to this effect.Comment: REVTEX, 6 pages, 5 figure
    corecore