91 research outputs found

    Infrared and upconversion spectroscopic studies of high Er3+content transparent YAG ceramic

    Get PDF
    In this article, we report the detailed spectroscopic studies of high Er3+content (50%) transparent YAG ceramic co-doped with nominal Cr3+ content (0.1 mol %). Various radiative and non-radiative spectroscopic properties such as radiative decay time, fluorescence branching ratio, emission/absorption cross sections, internal radiative quantum yields of the infrared and the upconverted emission bands are explored using standard experimental and theoretical methods and compared with YAG single crystal. Results show that although the non-radiative losses are high for 50% Er doped ceramic; several radiative spectral properties are almost in agreement with those for the single crystal YAG. Furthermore, because of the low dopant concentration of Cr3+, the sensitizing effect of Cr3+ was not observed. © 2011 Optical Society of America

    Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    Get PDF
    IRE1 plays an essential role in the endoplasmic reticulum (ER) stress response in yeast and mammals. We found that a double mutant of Arabidopsis IRE1A and IRE1B (ire1a/ire1b) is more sensitive to the ER stress inducer tunicamycin than the wild-type. Transcriptome analysis revealed that genes whose induction was reduced in ire1a/ire1b largely overlapped those in the bzip60 mutant. We observed that the active form of bZIP60 protein detected in the wild-type was missing in ire1a/ire1b. We further demonstrated that bZIP60 mRNA is spliced by ER stress, removing 23 ribonucleotides and therefore causing a frameshift that replaces the C-terminal region of bZIP60 including the transmembrane domain (TMD) with a shorter region without a TMD. This splicing was detected in ire1a and ire1b single mutants, but not in the ire1a/ire1b double mutant. We conclude that IRE1A and IRE1B catalyse unconventional splicing of bZIP60 mRNA to produce the active transcription factor

    New nonlinear-laser effects in crystalline fine-grained ceramics based on cubic Sc2O3 and Lu2O3 oxides: second and third harmonic generation, and cascaded self-sum-frequency mixing in UV spectral region

    Get PDF
    We report on the first observation of the nonlinear cascading chi((3)) chi((3)) effects in UV spectral range and second harmonic generation stipulated by the "defect" nonlinearity under one-micron pumping in crystalline ceramics based on cubic oxides Sc2O3 and Lu2O3. Broadband their multi-wavelength Stokes and anti-Stokes combs with the extension of 10475 cm(-1) (for Sc2O3) and 8232 cm(-1) (for Lu2O3) were recorded as well

    Mechanical and optical properties of Lu2O3 host-ceramics for Ln(3+) lasants

    Get PDF
    Micro-hardness and fracture toughness, as well as linear optical properties (full transmission spectrum and refractive index dispersion) of fine-grained Lu2O3 ceramics fabricated by VSN method are presented

    Prognostic significance of L-type amino acid transporter 1 expression in resectable stage I–III nonsmall cell lung cancer

    Get PDF
    The clinical significance of L-type amino acid transporter 1 (LAT1) expression remains unclear, whereas many experimental studies have demonstrated that LAT1 is associated with the proliferation of cancer cells. The purpose of this study was to evaluate the prognostic value of LAT1 in patients with nonsmall cell lung cancer (NSCLC). A total of 321 consecutive patients with completely resected pathologic stage I–III NSCLC were retrospectively reviewed. Expression of LAT1 and proliferative activity, as determined by the Ki-67 labelling index, was also evaluated immunohistochemically and correlated with the prognosis of patients who underwent complete resection of the tumour. Expression of LAT1 was positive in 163 patients (51%) (29% of adenocaricnoma (58 of 200 patients), 91% of squamous cell carcinoma (91 of 100 patients), and 67% of large cell carcinoma (14 of 21 patients)). The 5-year survival rate of LAT1-positive patients (51.8%) was significantly worse than that of LAT1-negative patients (87.8%; P<0.001). L-type amino acid transporter 1 expression was significantly associated with lymph node metastasis and disease stage. Multivariate analysis confirmed that positive expression of LAT1 was an independent factor for predicting a poor prognosis. There was a significant correlation between LAT1 expression and Ki-67 labelling index. LAT1 expression is a promising pathological factor to predict the prognosis in patients with resectable stage I–III NSCLC

    First-in-Human Phase I Study of an Oral HSP90 Inhibitor, TAS-116, in Patients with Advanced Solid Tumors.

    Get PDF
    HSP90 is involved in stability and function of cancer-related proteins. This study was conducted to define the MTD, safety, pharmacokinetics, pharmacodynamics, and preliminary antitumor efficacy of TAS-116, a novel class, orally available, highly selective inhibitor of HSP90. Patients with advanced solid tumors received TAS-116 orally once daily (QD, step 1) or every other day (QOD, step 2) in 21-day cycles. Each step comprised a dose escalation phase to determine MTD and an expansion phase at the MTD. In the dose escalation phase, an accelerated dose-titration design and a "3+3" design were used. Sixty-one patients were enrolled in Japan and the United Kingdom. MTD was determined to be 107.5 mg/m2/day for QD, and 210.7 mg/m2/day for QOD. In the expansion phase of step 1, TAS-116 was administered 5 days on/2 days off per week (QD × 5). The most common treatment-related adverse events included gastrointestinal disorders, creatinine increases, AST increases, ALT increases, and eye disorders. Eye disorders have been reported with HSP90 inhibitors; however, those observed with TAS-116 in the expansion phases were limited to grade 1. The systemic exposure of TAS-116 increased dose-proportionally with QD and QOD regimens. Two patients with non-small cell lung cancer and one patient with gastrointestinal stromal tumor (GIST) achieved a confirmed partial response. TAS-116 had an acceptable safety profile with some antitumor activity, supporting further development of this HSP90 inhibitor.This is a result from a first-in-human study, in which the HSP90 inhibitor TAS-116 demonstrated preliminary antitumor efficacy in patients with advanced solid tumors, including those with heavily pretreated GIST

    Arsenic-related DNA copy-number alterations in lung squamous cell carcinomas

    Get PDF
    BACKGROUND: Lung squamous cell carcinomas (SqCCs) occur at higher rates following arsenic exposure. Somatic DNA copy-number alterations (CNAs) are understood to be critical drivers in several tumour types. We have assembled a rare panel of lung tumours from a population with chronic arsenic exposure, including SqCC tumours from patients with no smoking history. METHODS: Fifty-two lung SqCCs were analysed by whole-genome tiling-set array comparative genomic hybridisation. Twenty-two were derived from arsenic-exposed patients from Northern Chile (10 never smokers and 12 smokers). Thirty additional cases were obtained for comparison from North American smokers without arsenic exposure. Twenty-two blood samples from healthy individuals from Northern Chile were examined to identify germline DNA copy-number variations (CNVs) that could be excluded from analysis. RESULTS: We identified multiple CNAs associated with arsenic exposure. These alterations were not attributable to either smoking status or CNVs. DNA losses at chromosomes 1q21.1, 7p22.3, 9q12, and 19q13.31 represented the most recurrent events. An arsenic-associated gain at 19q13.33 contains genes previously identified as oncogene candidates. CONCLUSIONS: Our results provide a comprehensive approach to molecular characteristics of the arsenic-exposed lung cancer genome and the non-smoking lung SqCC genome. The distinct and recurrent arsenic-related alterations suggest that this group of tumours may be considered as a separate disease subclass

    Phosphoregulation of Ire1 RNase splicing activity.

    Get PDF
    Abstract Ire1 is activated in response to accumulation of misfolded proteins within the endoplasmic reticulum as part of the unfolded protein response (UPR). It is a unique enzyme, possessing both kinase and RNase activity that is required for specific splicing of Xbp1 mRNA leading to UPR activation. How phosphorylation impacts on the Ire1 splicing activity is unclear. In this study, we isolate distinct phosphorylated species of Ire1 and assess their effects on RNase splicing both in vitro and in vivo. We find that phosphorylation within the kinase activation loop significantly increases RNase splicing in vitro. Correspondingly, mutants of Ire1 that cannot be phosphorylated on the activation loop show decreased specific Xbp1 and promiscuous RNase splicing activity relative to wild-type Ire1 in cells. These data couple the kinase phosphorylation reaction to the activation state of the RNase, suggesting that phosphorylation of the activation loop is an important step in Ire1-mediated UPR activation.</jats:p

    Nascentome Analysis Uncovers Futile Protein Synthesis in Escherichia coli

    Get PDF
    Although co-translational biological processes attract much attention, no general and easy method has been available to detect cellular nascent polypeptide chains, which we propose to call collectively a “nascentome.” We developed a method to selectively detect polypeptide portions of cellular polypeptidyl-tRNAs and used it to study the generality of the quality control reactions that rescue dead-end translation complexes. To detect nascent polypeptides, having their growing ends covalently attached to a tRNA, cellular extracts are separated by SDS-PAGE in two dimensions, first with the peptidyl-tRNA ester bonds preserved and subsequently after their in-gel cleavage. Pulse-labeled nascent polypeptides of Escherichia coli form a characteristic line below the main diagonal line, because each of them had contained a tRNA of nearly uniform size in the first-dimension electrophoresis but not in the second-dimension. The detection of nascent polypeptides, separately from any translation-completed polypeptides or degradation products thereof, allows us to follow their fates to gain deeper insights into protein biogenesis and quality control pathways. It was revealed that polypeptidyl-tRNAs were significantly stabilized in E. coli upon dysfunction of the tmRNA-ArfA ribosome-rescuing system, whose function had only been studied previously using model constructs. Our results suggest that E. coli cells are intrinsically producing aberrant translation products, which are normally eliminated by the ribosome-rescuing mechanisms
    corecore