525 research outputs found

    Neutrino Oscillations in Intermediate States.II -- Wave Packets

    Full text link
    We analyze oscillations of intermediate neutrinos in terms of the scattering of particles described by Gaussian wave packets. We study a scalar model as in a previous paper (I) but in realistic situations, where the two particles of the initial state and final state are wave packets and neutrinos are in the intermediate state. The oscillation of the intermediate neutrino is found from the time evolution of the total transition probability between the initial state and final state. The effect of a finite lifetime and a finite relaxation time are also studied. We find that the oscillation pattern depends on the magnitude of wave packet sizes of particles in the initial state and final state and the lifetime of the initial particle. For Δm212=3×102\Delta m^2_{21}=3\times 10^{-2} eV2^2, the oscillation probability deviates from that of the standard formula if the wave packet sizes are around 101310^{-13} m for 0.4 MeV neutrino.Comment: 29 pages, 11 figures. typos corrected, appendix adde

    消費者の権利の憲法による定礎を目指して

    Get PDF

    Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites

    Get PDF
    Petrological investigations of unequilibrated EH chondrites revealed the presence of three subgroups. They are identified based on the presence of different concentrations of MnS in niningerite. These differences were produced by partitioning of Mn between niningerite and enstatite as a result of different f_S2 and f_O2 during their formation. In order of increasing MnS-contents and hence increasing f_S2 and decreasing f_O2 these groups are : (A) Yamato (Y)-691 and Abee, (B) Indarch, and (C) Yamato-74370,South Oman, Qingzhen, Kota Kota, Kaidun III, and St. Marks. In the third subgroup the meteorites follow an equilibration and evolution sequence; Y-74370 the most primitive and St. Marks the most equilibrated. Y-691 is the most primitive in its subgroup. Differences in the chemical compositions of minerals in Y-691 and Qingzhen reveal a dichotomy in the compositions of niningerite, djerfisherite, kamacite, and perryite. Niningerites in Y-691 contain the least MnS (3.6-6.7 mole%) and counterparts in Qingzhen the most (12-14 mole%). K/Na ratios in djerfisherite are lower in Qingzhen than in Y-691. The Si concentration in kamacite in Qingzhen is higher than in Y-691. Ni in perryite in Qingzhen is higher than in Y-691. Na and K are highly fractionated between two sulfide lithologies. Na resides mainly in chondrules in caswellsilverite, in a Cl-bearing glass in the chondrules, and in Cr-rich sulfides in the matrix. In contrast, K is confined to djerfisherite, which occurs only in sulfide-rich objects in the matrix, and is highly depleted in chondrules. Two new layer structure minerals were discovered in Y-691 : (a) Na-Cu-Cr-sulfide with the general formula (NaCu) CrS_2,and (b) a Na-Cu-Zn-Cr-sulfide. An evolution scheme was constructed for the EH chondrites in the solar nebula and in their parent bodies. Niningerite and oldhamite condensed first and probably acted as nucleation sites for condensing sulfides, metals and silicates. Both minerals are abundant in chondrules, indicating that chondrule formation preceded all other sulfide- and metal-rich objects. For the first time, planetary metamorphic events were recognized. The Qingzhen Reaction, a breakdown of djerfisherite to troilite, covellite, idaite, bornite, and other unidentified phases, was discovered in Qingzhen and Y-691. Thermal episodes took place in the parent bodies at 1.4 Ba (Qingzhen), and 800 Ma (Y-691). Reverse zoning in niningerite indicates that Fe diffused from troilite to niningerite during the thermal event. In Y-691 sphalerite also formed during the metamorphic episode due to mobilization of Zn (and other volatiles). EH chondrites condensed in a chemically inhomogeneous region of the solar nebula where considerable variations in sulfur and oxygen fugacities existed

    Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways

    No full text
    International audienceMeasurement of black carbon (BC) was carried out at Syowa station Antarctica (69° S, 39° E) from February 2004 until January 2007. The BC concentration at Syowa ranged from below detection to 176 ng m?3 during the measurements. Higher BC concentrations were observed mostly under strong wind (blizzard) conditions due to the approach of a cyclone and blocking event. The BC-rich air masses traveled from the lower troposphere of the Atlantic and Indian Oceans to Syowa (Antarctic coast). During the summer (November?February), the BC concentration showed a diurnal variation together with surface wind speed and increased in the katabatic wind from the Antarctic continent. Considering the low BC source strength in the Antarctic continent, the higher BC concentration in the continental air (katabatic wind) might be caused by long range transport of BC via the free troposphere from mid- and low- latitudes. The seasonal variation of BC at Syowa had a maximum in August, while at the other coastal stations (Halley, Neumayer, and Ferraz) and the continental station (Amundsen-Scott), the maximum occurred in October. This difference may result from different transport pathways and scavenging of BC by precipitation during the transport from the source regions. During the austral summer, long-range transport of BC via the free troposphere is likely to make an important contribution to the ambient BC concentration. The BC transport flux indicated that BC injection into the Antarctic region strongly depended on the frequency of storm (blizzard) conditions. The seasonal variation of BC transport flux increased by 290 mg m?2 month?1 in winter?spring when blizzards frequently occurred, whereas the flux decreased to lower than 50 mg m?2 month?1 in the summer with infrequent blizzards

    Printable Thermoelectric Device

    Get PDF
    We have fabricated a printed flexible thermoelectric generator using composite of Bi2Te3 and PEDOT:PSS. The nano-structured thermoelectric thin film was made by printing method and the paste for printing was prepared by mixing nano-particles of Bi2Te3, PEDOT:PSS and polyamic acid as a additives. The non-dimensional figure of merit was 0.2 for p-type composite thin film at room temperature due to the low thermal conductivity. The interfacial thermal resistance between Bi2Te3 and PEDOT:PSS was measured to understand the low effective thermal conductivity of the printed thermoelectric composite. The measured organic-inorganic interfacial thermal resistance is in the order of 10−7 (m2centerdotK)/W which is about 10 times higher than the inorganic-inorganic interfacial thermal resistance. The extremely low thermal conductivity of the printed thermoelectric materials can be explained by high interfacial resistance between inorganic-organic materials.18th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2018), 4–7 December 2018, Daytona Beach, Florida, US

    Remarks on flavor-neutrino propagators and oscillation formulae

    Get PDF
    We examine the general structure of the formulae of neutrino oscillations proposed by Blasone and Vitiello(BV). Reconstructing their formulae with the retarded propagators of the flavor neutrino fields for the case of many flavors, we can get easily the formulae which satisfy the suitable boundary conditions and are independent of arbitrary mass parameters {μρ}\{\mu_{\rho}\}, as is obtained by BV for the case of two flavors. In this two flavor case, our formulae reduce to those obtained by BV under TT-invariance condition. Furthermore, the reconstructed probabilities are shown to coincide with those derived with recourse to the mass Hilbert space Hm{\cal H}_{m} which is unitarily inequivalent to the flavor Hilbert space Hf{\cal H}_{f}. Such a situation is not found in the corresponding construction a la BV. Then the new factors in the BV's formulae, which modify the usual oscill ation formulae, are not the trace of the flavor Hilbert space construction, but come from Bogolyubov transformation among the operators of spin-1/2 ne utrino with different masses.Comment: revtex, 16 page
    corecore