3,684 research outputs found

    Low-lying excitations and magnetization process of coupled tetrahedral systems

    Full text link
    We investigate low-lying singlet and triplet excitations and the magnetization process of quasi-1D spin systems composed of tetrahedral spin clusters. For a class of such models, we found various exact low-lying excitations; some of them are responsible for the first-order transition between two different ground states formed by local singlets. Moreover, we find that there are two different kinds of magnetization plateaus which are separated by a first-order transition.Comment: To appear in Phys.Rev.B (Issue 01 August 2002). A short comment is adde

    RT-2 Detection of Quasi-Periodic Pulsations in the 2009 July 5 Solar Hard X-ray Flare

    Full text link
    We present the results of an analysis of hard X-ray observations of the C2.7 solar flare detected by the RT-2 Experiment onboard the Coronas - Photon satellite. We detect hard X-ray pulsations at periods of ~12 s and ~15 s. We find a marginal evidence for a decrease in period with time. We have augmented these results using the publicly available data from the RHESSI satellite. We present a spectral analysis and measure the spectral parameters.Comment: 12 pages, 8 figures and 3 tables, accepted for publication in The Astrophysical Journa

    Collective Singlet Excitations and Evolution of Raman Spectral Weights in the 2D Spin Dimer Compound SrCu2(BO3)2

    Full text link
    We present a Raman light scattering study of the two-dimensional quantum spin system SrCu2(BO3)2 and show that the magnetic excitation spectrum has a rich structure, including several well-defined bound state modes at low temperature, and a scattering continuum and quasielastic light scattering contributions at high temperature. The key to the understanding of the unique features of SrCu2(BO3)2 is the presence of strong interactions between well-localized triplet excitations in the network of orthogonal spin dimers realized in this compound. Based on our analysis of the Heisenberg model relevant for this material, we argue that the collective excitations involving two and three-particle singlet bound states have large binding energies and are observed as well-defined peaks in the Raman spectrum.Comment: 5 pages, 2 figures. Revised version, to appear in Phys. Rev. Lett. (2000

    Suzaku measurement of Abell 2204's intracluster gas temperature profile out to 1800 kpc

    Full text link
    Context: Measurements of intracluster gas temperatures out to large radii are important for the use of clusters for precision cosmology and for studies of cluster physics. Previous attempts to measure robust temperatures at cluster virial radii failed. Aims: The goal of this work is to measure the temperature profile of the very relaxed galaxy cluster Abell 2204 out to large radii, possibly reaching the virial radius. Methods: Taking advantage of its low particle background due to its low-Earth orbit, Suzaku data are used to measure the outer temperature profile of Abell 2204. These data are combined with Chandra and XMM-Newton data of the same cluster in order to make the connection to the inner regions, unresolved by Suzaku, and to determine the smearing due to Suzaku's PSF. Results: The temperature profile of Abell 2204 is determined from 10 kpc to 1800 kpc, close to an estimate of r200 (the approximation to the virial radius). The temperature rises steeply from below 4 keV in the very center up to more than 8 keV in the intermediate range and then decreases again to about 4 keV at the largest radii. Varying the measured particle background normalization artificially by +-10 percent does not change the results significantly. Predictions for outer temperature profiles based on hydrodynamic simulations show good agreement. In particular, we find the observed temperature profile to be slightly steeper but consistent with a drop of a factor of 0.6 from 0.3 r200 to r200, as predicted by simulations. Conclusions: Temperature measurements up to the virial radius seem feasible with Suzaku, when a careful analysis of the different background components and the effects of the PSF is performed. The result obtained here indicates that numerical simulations capture the intracluster gas physics well in cluster outskirts.Comment: 7 pages; Astronomy and Astrophysics, accepted; additional systematic effects have been quantified, results unchanged; also available at http://www.reiprich.ne

    Dynamical structure factors of S=1/2S=1/2 two-leg spin ladder systems

    Full text link
    We investigate dynamical properties of S=1/2S=1/2 two-leg spin ladder systems. In a strong coupling region, an isolated mode appears in the lowest excited states, while in a weak coupling region, an isolated mode is reduced and the lowest excited states become a lower bound of the excitation continuum. We find in the system with equal intrachain and interchain couplings that due to a cyclic four-spin interaction, the distribution of the weights for the dynamical structure factor and characteristics of the lowest excited states are strongly influenced. The dynamical properties of two systems proposed for SrCu2O3{\rm SrCu_2O_3} are also discussed.Comment: 5 pages, 6 figure

    Optical absorption spectra in SrCu_2O_3 two-leg spin ladder

    Full text link
    We calculate the phonon-assisted optical-absorption spectra in SrCu_2O_3 two-leg spin-ladder systems. The results for two models proposed for SrCu_2O_3 are compared. In the model including the effects of a cyclic four-spin interaction, the shoulder structure appears at 978 cm^{-1} and the peak appears at 1975 cm^{-1} in the spectrum for polarization of the electric field parallel to the legs. In the other model which describes a pure two-leg ladder, the peak appears around the lower edge of the spectrum at 1344 cm^{-1}. The feature can be effective in determining the proper model for SrCu_2O_3.Comment: 5 pages, 5 figures, to appear in PRB vol. 67 (2003

    Doped bilayer antiferromagnets: Hole dynamics on both sides of a magnetic ordering transition

    Full text link
    The two-layer square lattice quantum antiferromagnet with spins 1/2 shows a magnetic order-disorder transition at a critical ratio of the interplane to intraplane couplings. We investigate the dynamics of a single hole in a bilayer antiferromagnet described by a t-J Hamiltonian. To model the spin background we propose a ground-state wave function for the undoped system which covers both magnetic phases and includes transverse as well as longitudinal spin fluctuations. The photoemission spectrum is calculated using the spin-polaron picture for the whole range of the ratio of the magnetic couplings. This allows for the study of the hole dynamics of both sides of the magnetic order-disorder transition. For small interplane coupling we find a quasiparticle with properties known from the single-layer antiferromagnet, e.g., the dispersion minimum is at (pi/2,pi/2). For large interplane coupling the hole dispersion is similar to that of a free fermion (with reduced bandwidth). The cross-over between these two scenarios occurs inside the antiferromagnetic phase which indicates that the hole dynamics is governed by the local environment of the hole.Comment: 14 pages, 11 figs, minor changes, discussion of spin correlations added, accepted for publication in PR
    • …
    corecore