320 research outputs found

    Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    No full text
    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity

    Disentangling Biological Transformations and Photodegradation Processes from Marine Dissolved Organic Matter Composition in the Global Ocean

    Get PDF
    Dissolved organic matter (DOM) holds the largest amount of organic carbon in the ocean, with most of it residing in the deep for millennia. Specific mechanisms and environmental conditions responsible for its longevity are still unknown. Microbial transformations and photochemical degradation of DOM in the surface layers are two processes that shape its molecular composition. We used molecular data (via Fourier transform ion cyclotron resonance mass spectrometry) from two laboratory experiments that focused on (1) microbial processing of fresh DOM and (2) photodegradation of deep-sea DOM to derive independent process-related molecular indices for biological formation and transformation (Ibio) and photodegradation (Iphoto). Both indices were applied to a global ocean data set of DOM composition. The distributions of Iphoto and Ibio were consistent with increased photodegradation and biological reworking of DOM in sunlit surface waters, and traces of these surface processes were evident at depth. Increased Ibio values in the deep Southern Ocean and South Atlantic implied export of microbially reworked DOM. Photodegraded DOM (increased Iphoto) in the deep subtropical gyres of Atlantic and Pacific oceans suggested advective transport in warm-core eddies. The simultaneous application of Iphoto and Ibio disentangled and assessed two processes that left unique molecular signatures in the global ocean

    Cocapture of cognate and bystander antigens can activate autoreactive B cells

    Get PDF
    Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) are associated with autoimmune central nervous system diseases like acute disseminated encephalomyelitis (ADEM). For ADEM, it is speculated that a preceding infection is the trigger of the autoimmune response, but the mechanism connecting the infection to the production of MOG antibodies remains a mystery. We reasoned that the ability of B cells to capture cognate antigen from cell membranes, along with small quantities of coexpressed “bystander” antigens, might enable B-cell escape from tolerance. We tested this hypothesis using influenza hemagglutinin as a model viral antigen and transgenic, MOG-specific B cells. Using flow cytometry and live and fixed cell microscopy, we show that MOG-specific B cells take up large amounts of MOG from cell membranes. Uptake of the antigen from the membrane leads to a strong activation of the capturing B cell. When influenza hemagglutinin is also present in the membrane of the target cell, it can be cocaptured with MOG by MOG-specific B cells via the B-cell receptor. Hemagglutinin and MOG are both presented to T cells, which in turn are activated and proliferate. As a consequence, MOG-specific B cells get help from hemagglutinin-specific T cells to produce anti-MOG antibodies. In vivo, the transfer of MOG-specific B cells into recipient mice after the cocapture of MOG and hemagglutinin leads to the production of class-switched anti-MOG antibodies, dependent on the presence of hemagglutinin-specific T cells. This mechanism offers a link between infection and autoimmunity. Keywords: tolerance; autoantibodies; antigen capture; antigen presentation; influenz

    Sequential and compartmentalized action of Rabs, SNAREs, and MAL in the apical delivery of fusiform vesicles in urothelial umbrella cells

    Get PDF
    Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV–membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking

    A New Targeting - A New Take-Up? Non-Take-Up of Social Assistance in Germany after Social Policy Reforms

    Full text link
    We present first estimates of rates of non-take-up for social assistance in Germany after the implementation of major social policy reforms in 2005. The analysis is based on a microsimulation model, which includes a detailed description of the German social assistance programme. Our findings suggest a moderate decrease in non-take-up compared to estimates before the reform. In order to identify the determinants of claiming social assistance, we estimate a model of take-up behaviour which considers potential endogeneity of the benefit level. The estimations reveal that the degree of needs, measured as the social assistance benefit level a household is eligible for, and the expected duration of eligibility are the key determinants of the take-up decision, while costs of claiming seem to play a minor role.Diese Studie liefert erste Schätzungen für Quoten der Nicht-Inanspruchnahme für Leistungen der Grundsicherung nach SGB II und SGB XII. Die Analyse basiert auf einem Mikrosimulationsmodell, welches eine detaillierte Abbildung der deutschen Sozialgesetzgebung erlaubt. Unsere Ergebnisse deuten darauf hin, dass sich die Nicht-Inanspruchnahme im Vergleich zur Situation vor der Hartz-IV-Reform verringert hat. Um die Determinanten der Inanspruchnahme zu bestimmen, schätzen wir ein Modell des Inanspruchnahmeverhaltens. Die Schätzungen zeigen, dass die Höhe des Anspruchs sowie die erwartete Bezugsdauer die entscheidenden Einflussfaktoren darstellen, während die Kosten der Inanspruchnahme eine untergeordnete Rolle spielen
    corecore