2,534 research outputs found

    Nucleosynthesis Constraints on Scalar-Tensor Theories of Gravity

    Get PDF
    We study the cosmological evolution of massless single-field scalar-tensor theories of gravitation from the time before the onset of e+e−e^+e^- annihilation and nucleosynthesis up to the present. The cosmological evolution together with the observational bounds on the abundances of the lightest elements (those mostly produced in the early universe) place constraints on the coefficients of the Taylor series expansion of a(ϕ)a(\phi), which specifies the coupling of the scalar field to matter and is the only free function in the theory. In the case when a(ϕ)a(\phi) has a minimum (i.e., when the theory evolves towards general relativity) these constraints translate into a stronger limit on the Post-Newtonian parameters Îł\gamma and ÎČ\beta than any other observational test. Moreover, our bounds imply that, even at the epoch of annihilation and nucleosynthesis, the evolution of the universe must be very close to that predicted by general relativity if we do not want to over- or underproduce 4^{4}He. Thus the amount of scalar field contribution to gravity is very small even at such an early epoch.Comment: 15 pages, 2 figures, ReVTeX 3.1, submitted to Phys. Rev. D1

    Gravitational Waves in Generalised Brans-Dicke Theory

    Full text link
    We have solved cosmological gravitational Wave(GW)equation in the frame work of Generalised Brans-Dicke(GBD) theory for all epochs of the Universe.The solutions are expressed in terms of the present value of the Brans-Dicke coupling parameter ω(ϕ)\omega(\phi).It is seen that the solutions represent travelling growing modes for negative values of ω0\omega_{0} for all epochs of the Universe.Comment: 7Pages,no figure

    A numerical method for rapid estimation of drawbead restraining force based on non-linear, anisotropic constitutive equations

    Get PDF
    AbstractNumerical procedures to predict drawbead restraining forces (DBRF) were developed based on the semi-analytical (non-finite-element) hybrid membrane/bending method. The section forces were derived by equating the work to pull sheet material through the drawbead to the work required to bend and unbend the sheet along with frictional forces on drawbead radii. As a semi-analytical method, the new approach was especially useful to analyze the effects of various constitutive parameters with less computational cost. The present model could accommodate general non-quadratic anisotropic yield function and non-linear anisotropic hardening under the plane strain condition. Several numerical sensitivity analyses for examining the effects of process parameters and material properties including the Bauschinger effect and the shape of yield surface on DBRF were presented. Finally, the DBRFs of SPCC steel sheet passing a single circular drawbead were predicted and compared with the measurements

    The Birkhoff Theorem in Multidimensional Gravity

    Full text link
    The validity conditions for the extended Birkhoff theorem in multidimensional gravity with nn internal spaces are formulated, with no restriction on space-time dimensionality and signature. Examples of matter sources and geometries for which the theorem is valid are given. Further generalization of the theorem is discussed.Comment: 8 page

    On the Energy-Momentum Tensor of the Scalar Field in Scalar--Tensor Theories of Gravity

    Get PDF
    We study the dynamical description of gravity, the appropriate definition of the scalar field energy-momentum tensor, and the interrelation between them in scalar-tensor theories of gravity. We show that the quantity which one would naively identify as the energy-momentum tensor of the scalar field is not appropriate because it is spoiled by a part of the dynamical description of gravity. A new connection can be defined in terms of which the full dynamical description of gravity is explicit, and the correct scalar field energy-momentum tensor can be immediately identified. Certain inequalities must be imposed on the two free functions (the coupling function and the potential) that define a particular scalar-tensor theory, to ensure that the scalar field energy density never becomes negative. The correct dynamical description leads naturally to the Einstein frame formulation of scalar-tensor gravity which is also studied in detail.Comment: Submitted to Phys. Rev D15, 10 pages. Uses ReVTeX macro

    Applicability Of The Hauser-Feshbach Approach For The Determination of Astrophysical Reaction Rates

    Get PDF
    Nuclear Astrophysics requires the knowledge of reaction rates over a wide range of nuclei and temperatures. In recent calculations the nuclear level density - as an important ingredient to the statistical model (Hauser-Feshbach) - has shown the highest uncertainties. In a back-shifted Fermi-gas formalism utilizing an energy-dependent level density parameter and employing microscopic corrections from a recent FRDM mass formula, we obtain a highly improved fit to experimental level densities. The resulting level density is used for determining criteria for the applicability of the statistical model on neutron-induced reactions.Comment: 4 pages, uses espcrc1.sty, Proc. Intl. Conf. "Nuclei in the Cosmos IV", Univ. Notre Dame 1996, Nucl. Phys. A, in press. Postscript is also available at http://quasar.physik.unibas.ch/research.htm

    Why people attend science festivals : interests, motivations and self-reported benefits of public engagement with research

    Get PDF
    As a form of public engagement, science festivals have rapidly expanded in size and number over recent years. However, as with other domains of informal public engagement that are not linked to policy outcomes, existing research does not fully address science festivals’ impacts and popularity.This study adduces evidence from surveys and focus groups to elucidate the perspectives of visitors at a large UK science festival. Results show that visitors value the opportunities science festivals afford to interact with scientific researchers and to encounter different types of science engagement aimed at adults, children and families. The most significant self-reported impact of attending a science festival was the development of increased interest and curiosity about new areas of scientific knowledge within a socially stimulating and enjoyable setting
    • 

    corecore