506 research outputs found

    The Deep Space Network: A Radio Communications Instrument for Deep Space Exploration

    Get PDF
    The primary purpose of the Deep Space Network (DSN) is to serve as a communications instrument for deep space exploration, providing communications between the spacecraft and the ground facilities. The uplink communications channel provides instructions or commands to the spacecraft. The downlink communications channel provides command verification and spacecraft engineering and science instrument payload data

    Topological surface states in the Kondo insulator YbB12_{12} revealed via planar tunneling spectroscopy

    Full text link
    Planar tunneling spectroscopy of the Kondo insulator SmB6_6 suggests that an interaction between the surface Dirac fermions and the bulk spin excitons results in incompletely protected topological surface states. To gain further insight into their true nature, it is necessary to study other topological Kondo insulator candidates. Calculations of electronic energy bands predict that the Kondo insulator YbB12_{12} hosts topological surface states protected by crystalline mirror symmetry. In this study, we present tunneling conductance spectra obtained from the (001) surface of YbB12_{12} single crystals and discuss them in comparison to SmB6_6. The linear conductance at low bias provides strong evidence for the existence of surface Dirac fermions. The double-hump structure in the negative bias region is associated with hybridized band edges, in agreement with a calculated band structure. While these similarities with SmB6 are suggestive of the existence of topological surface states in YbB12_{12}, in agreement with other experiments, some discrepancies are also observed, which we attribute to a difference in their exact nature from those in SmB6_6.Comment: 25 pages, 7 figures, submitted to Physical Review

    Faculty accountability and faculty workload: A preliminary cost analysis of their relationship as revealed by PhD productivity

    Full text link
    General concerns for faculty accountability are examined in the context of faculty workload and costs. Graduating a PhD student is used as the unit for analysis. The unit is compared to instructional productivity. The data came from a 10-year interval at a major graduate university. Six liberal arts departments with a 225-member faculty provide the PhD output and workload information. Work equivalents are determined from institutional and faculty self-reports. Graduating a PhD is found to be equivalent to one-third of a full workload. Implications are given for comparisons between programs within a university and between types of institutions in the larger system of higher education. Concerns also emerge for improved personnel practices with respect to faculty work assignments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43583/1/11162_2004_Article_BF00991561.pd

    Chronic Myeloid Leukemia Stem Cell Biology

    Get PDF
    Leukemia progression and relapse is fueled by leukemia stem cells (LSC) that are resistant to current treatments. In the progression of chronic myeloid leukemia (CML), blast crisis progenitors are capable of adopting more primitive but deregulated stem cell features with acquired resistance to targeted therapies. This in turn promotes LSC behavior characterized by aberrant self-renewal, differentiation, and survival capacity. Multiple reports suggest that cell cycle alterations, activation of critical signaling pathways, aberrant microenvironmental cues from the hematopoietic niche, and aberrant epigenetic events and deregulation of RNA processing may facilitate the enhanced survival and malignant transformation of CML progenitors. Here we review the molecular evolution of CML LSC that promotes CML progression and relapse. Recent advances in these areas have identified novel targets that represent important avenues for future therapeutic approaches aimed at selectively eradicating the LSC population while sparing normal hematopoietic progenitors in patients suffering from chronic myeloid malignancies

    Contribution of Various Carbon Sources Toward Isoprene Biosynthesis in Poplar Leaves Mediated by Altered Atmospheric CO2 Concentrations

    Get PDF
    Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a 13CO2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41+, which represents, in part, substrate derived from pyruvate, and M69+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower 13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO2 (190 ppmv) had rates of isoprene emission and rates of labeling of M41+ and M69+ that were nearly twice those observed in trees grown under elevated CO2 (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO2
    • …
    corecore