31 research outputs found

    Impacts of changed litter inputs on soil CO2 efflux in three forest types in central south China

    Get PDF
    We have defined Neutrosophic Over-/Under-/Off-Set and Logic for the first time in 1995 and published in 2007. During 1995-2016 we presented them to various national and international conferences and seminars. These new notions are totally different from other sets/logics/probabilities. We extended the neutrosophic set respectively to Neutrosophic Overset {when some neutrosophic component is > 1}, to Neutrosophic Underset {when some neutrosophic component is < 0}, and to Neutrosophic Offset {when some neutrosophic components are off the interval [0, 1], i.e. some neutrosophic component > 1 and other neutrosophic component < 0}. This is no surprise since our real-world has numerous examples and applications of over-/under-/off-neutrosophic components

    Fungi Unearthed: Transcripts Encoding Lignocellulolytic and Chitinolytic Enzymes in Forest Soil

    Get PDF
    BACKGROUND: Fungi are the main organisms responsible for the degradation of biopolymers such as lignin, cellulose, hemicellulose, and chitin in forest ecosystems. Soil surveys largely target fungal diversity, paying less attention to fungal activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we have focused on the organic horizon of a hardwood forest dominated by sugar maple that spreads widely across Eastern North America. The sampling site included three plots receiving normal atmospheric nitrogen deposition and three that received an extra 3 g nitrogen m(2) y(1) in form of sodium nitrate pellets since 1994, which led to increased accumulation of organic matter in the soil. Our aim was to assess, in samples taken from all six plots, transcript-level expression of fungal genes encoding lignocellulolytic and chitinolytic enzymes. For this we collected RNA from the forest soil, reverse-transcribed it, and amplified cDNAs of interest, using both published primer pairs as well as 23 newly developed ones. We thus detected transcript-level expression of 234 genes putatively encoding 26 different groups of fungal enzymes, notably major ligninolytic and diverse aromatic-oxidizing enzymes, various cellulose- and hemicellulose-degrading glycoside hydrolases and carbohydrate esterases, enzymes involved in chitin breakdown, N-acetylglucosamine metabolism, and cell wall degradation. Among the genes identified, 125 are homologous to known ascomycete genes and 105 to basidiomycete genes. Transcripts corresponding to all 26 enzyme groups were detected in both control and nitrogen-supplemented plots. CONCLUSIONS/SIGNIFICANCE: Many of these enzyme groups are known to be important in soil turnover processes, but the contribution of some is probably underestimated. Our data highlight the importance of ascomycetes, as well as basidiomycetes, in important biogeochemical cycles. In the nitrogen-supplemented plots, we have detected no transcript-level gap likely to explain the observed increased carbon storage, which is more likely due to community changes and perhaps transcriptional and/or post-transcriptional down-regulation of relevant genes

    The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling

    Full text link

    ⁴&sup1;Ca in tooth enamel. Part II: A means for retrospective biological neutron dosimetry in atomic bomb survivors.

    No full text
    (41)Ca is produced mainly by absorption of low-energy neutrons on stable (40)Ca. We used accelerator mass spectrometry (AMS) to measure (41)Ca in enamel of 16 teeth from 13 atomic bomb survivors who were exposed to the bomb within 1.2 km from the hypocenter in Hiroshima. In our accompanying paper (Wallner et al., Radiat. Res. 174, 000-000, 2010), we reported that the background-corrected (41)Ca/Ca ratio decreased from 19.5 x 10(-15) to 2.8 x 10(-15) with increasing distance from the hypocenter. Here we show that the measured ratios are in good correlation with gamma-ray doses assessed by electron paramagnetic resonance (EPR) in the same enamel samples, and agree well with calculated ratios based on either the current Dosimetry System 2002 (DS02) or more customized dose estimates where the regression slope as obtained from an errors-in-variables linear model was about 0.85. The calculated DS02 neutron dose to the survivors was about 10 to 80 mGy. The low-energy neutrons responsible for (41)Ca activation contributed variably to the total neutron dose depending on the shielding conditions. Namely, the contribution was smaller (10%) when shielding conditions were lighter (e.g., outside far away from a single house) and was larger (26%) when they were heavier (e.g., in or close to several houses) because of local moderation of neutrons by shielding materials. We conclude that AMS is useful for verifying calculated neutron doses under mixed exposure conditions with gamma rays

    41Ca in tooth enamel. part II: A means for retrospective biological neutron dosimetry in atomic bomb survivors

    No full text
    41Ca is produced mainly by absorption of low-energy neutrons on stable 40Ca. We used accelerator mass spectrometry (AMS) to measure 41Ca in enamel of 16 teeth from 13 atomic bomb survivors who were exposed to the bomb within 1.2 km from the hypocenter i

    Ectomycorrhizal Fungal Associates of Pinus contorta in Soils Associated with a Hot Spring in Norris Geyser Basin, Yellowstone National Park, Wyoming

    No full text
    Molecular methods and comparisons of fruiting patterns (i.e., presence or absence of fungal fruiting bodies in different soil types) were used to determine ectomycorrhizal (EM) associates of Pinus contorta in soils associated with a thermal soil classified as ultra-acidic to extremely acidic (pH 2 to 4). EM were sampled by obtaining 36 soil cores from six paired plots (three cores each) of both thermal soils and forest soils directly adjacent to the thermal area. Fruiting bodies (mushrooms) were collected for molecular identification and to compare fruiting body (above-ground) diversity to below-ground diversity. Our results indicate (i) that there were significant decreases in both the level of EM infection (130 ± 22 EM root tips/core in forest soil; 68 ± 22 EM root tips/core in thermal soil) and EM fungal species richness (4.0 ± 0.5 species/core in forest soil; 1.2 ± 0.2 species/core in thermal soil) in soils associated with the thermal feature; (ii) that the EM mycota of thermal soils was comprised of a small set of dominant species and included very few rare species, while the EM mycota of forest soils contained a few dominant species and several rare EM fungal species; (iii) that Dermocybe phoenecius and a species of Inocybe, which was rare in forest soils, were the dominant EM fungal species in thermal soils; (iv) that other than the single Inocybe species, there was no overlap in the EM fungal communities of the forest and thermal soils; and (v) that the fungal species forming the majority of the above-ground fruiting structures in thermal soils (Pisolithus tinctorius, which is commonly used in remediation of acid soils) was not detected on a single EM root tip in either type of soil. Thus, P. tinctorius may have a different role in these thermal soils. Our results suggest that this species may not perform well in remediation of all acid soils and that factors such as pH, soil temperature, and soil chemistry may interact to influence EM fungal community structure. In addition, we identified at least one new species with potential for use in remediation of hot acidic soil

    Use of DNA barcodes to identify flowering plants

    No full text
    Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes
    corecore