7 research outputs found
T1 independent, T2* corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis
Purpose: To determine the precision and accuracy of hepatic fat-fraction measured with a chemical shift-based MRI fat-water separation method, using single-voxel MR spectroscopy (MRS) as a reference standard. Materials and Methods: In 42 patients, two repeated measurements were made using a T 1-independent, T2 *-corrected chemical shift-based fat-water separation method with multi-peak spectral modeling of fat, and T 2-corrected single voxel MR spectroscopy. Precision was assessed through calculation of Bland-Altman plots and concordance correlation intervals. Accuracy was assessed through linear regression between MRI and MRS. Sensitivity and specificity of MRI fat-fractions for diagnosis of steatosis using MRS as a reference standard were also calculated. Results: Statistical analysis demonstrated excellent precision of MRI and MRS fat-fractions, indicated by 95% confidence intervals (units of absolute percent) of [-2.66%,2.64%] for single MRI ROI measurements, [-0.81%,0.80%] for averaged MRI ROI, and [-2.70%,2.87%] for single-voxel MRS. Linear regression between MRI and MRS indicated that the MRI method is highly accurate. Sensitivity and specificity for detection of steatosis using averaged MRI ROI were 100% and 94%, respectively. The relationship between hepatic fat-fraction and body mass index was examined. Conclusion: Fat-fraction measured with T1-independent T 2*-corrected MRI and multi-peak spectral modeling of fat is a highly precise and accurate method of quantifying hepatic steatosis. © 2011 Wiley-Liss, Inc
Recommendations for Imaging Patients With Cardiac Implantable Electronic Devices (CIEDs)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/167421/1/jmri27320.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/167421/2/jmri27320_am.pd
Tissue mimicking materials for a multi-imaging modality prostate phantom
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder