3,476 research outputs found

    Spin and model identification of Z' bosons at the LHC

    Full text link
    Heavy resonances appearing in the clean Drell-Yan channel may be the first new physics to be observed at the proton-proton CERN LHC. If a new resonance is discovered at the LHC as a peak in the dilepton invariant mass distribution, the characterization of its spin and couplings will proceed via measuring production rates and angular distributions of the decay products. We discuss the discrimination of the spin-1 of Z' representative models (Z'_{SSM}, Z'_{psi}, Z'_{eta}, Z'_{chi}, Z'_{LR}, and Z'_{ALR}) against the Randall-Sundrum graviton resonance (spin-2) and a spin-0 resonance (sneutrino) with the same mass and producing the same number of events under the observed peak. To assess the range of the Z' mass where the spin determination can be performed to a given confidence level, we focus on the angular distributions of the Drell-Yan leptons, in particular we use as a basic observable an angular-integrated center-edge asymmetry, A_{CE}. The spin of a heavy Z' gauge boson can be established with A_{CE} up to M_{Z'} \simeq 3.0 TeV, for an integrated luminosity of 100 fb^{-1}, or minimal number of events around 110. We also examine the distinguishability of the considered Z' models from one another, once the spin-1 has been established, using the total dilepton production cross section. With some assumption, one might be able to distinguish among these Z' models at 95% C.L. up to M_{Z'} \simeq 2.1 TeV.Comment: 18 pages, 6 figure

    Energy bands, conductance and thermoelectric power for ballistic electrons in a nanowire with spin-orbit interaction

    Full text link
    We calculated the effects of spin-orbit interaction (SOI) on the energy bands, ballistic conductance and the electron-diffusion thermoelectric power of a nanowire by varying the temperature, electron density and width of the wire. The potential barriers at the edges of the wire are assumed to be very high. A consequence of the boundary conditions used in this model is determined by the energy band structure, resulting in wider plateaus when the electron density is increased due to larger energy-level separation as the higher subbands are occupied by electrons. The nonlinear dependence of the transverse confinement on position with respect to the well center excludes the "pole-like feature" in the conductance which is obtained when a harmonic potential is employed for confinement. At low temperature, the electron diffusion thermoelectric power increases linearly with T but deviates from the linear behavior for large values of T.Comment: Updated corrected version of the original submissio

    Analytic Confinement and Regge Trajectories

    Full text link
    A simple relativistic quantum field model with the Yukawa-type interaction is considered to demonstrate that the analytic confinement of the constituent ("quarks") and carrier ("gluons") particles explains qualitatively the basic dynamical properties of the spectrum of mesons considered as two-particle stable bound states of quarks and gluons: the quarks and gluons are confined, the glueballs represent bound states of massless gluons, the masses of mesons are larger than the sum of the constituent quark masses and the Regge trajectories of mesonic orbital excitations are almost linear.Comment: RevTeX, 16 pages, 3 figures and 2 table

    Charmed quark component of the photon wave function

    Full text link
    We determine the c-anti-c component of the photon wave function on the basis of (i) the data on the transitions e+ e- -> J/psi(3096), psi(3686), psi(4040), psi(4415), (ii) partial widths of the two-photon decays eta_{c0}(2979), chi_{c0}(3415), chi_{c2}(3556) -> gamma-gamma, and (iii) wave functions of the charmonium states obtained by solving the Bethe-Salpeter equation for the c-anti-c system. Using the obtained c-anti-c component of the photon wave function we calculate the gamma-gamma decay partial widths for radial excitation 2S state, eta_{c0}(3594) -> gamma-gamma, and 2P states chi_{c0}(3849), chi_{c2}(3950) -> gamma-gamma.Comment: 20 pages, 8 figure

    Relativistic quantum model of confinement and the current quark masses

    Get PDF
    We consider a relativistic quantum model of confined massive spinning quarks and antiquarks which describes leading Regge trajectories of mesons. The quarks are described by the Dirac equations and the gluon contribution is approximated by the Nambu-Goto straight-line string. The string tension and the current quark masses are the main parameters of the model. Additional parameters are phenomenological constants which approximate nonstring short-range contributions. Comparison of the measured meson masses with the model predictions allows one to determine the current quark masses (in MeV) to be ms=227±5, mc=1440±10, mb=4715±20m_s = 227 \pm 5,~ m_c = 1440 \pm 10,~ m_b = 4715 \pm 20. The chiral SU3SU_3 model[23] makes it possible to estimate from here the uu- and dd-quark masses to be mu=6.2±0.2m_u = 6.2 \pm 0.2~ Mev and md=11.1±0.4m_d = 11.1 \pm 0.4 Mev.Comment: 15 pages, LATEX, 2 tables. (submitted to Phys.Rev.D

    Lattice thermal conductivity of pristine and doped (B,N) Graphene

    Full text link
    In this paper, the effect of B and N doping on the phonon induced thermal conductivity of graphene has been investigated. This study is important when one has to evaluate the usefulness of electronic properties of B and N doped graphene. We have performed the calculations by employing density functional perturbation theory(DFPT) to calculate the inter-atomic forces=force constants of pristine/doped graphene. Thermal conductivity calculations have been carried out by making use of linearized Boltzmann transport equations (LBTE) under single-mode relaxation time approximation (RTA). The thermal conductivity of pristine graphene has been found to be of the order of 4000W/mK at 100K, which decreases gradually with an increase in temperature. The thermal conductivity decreases drastically by 96 % to 190 W/mK when doped with 12.5 % B and reduces by 99 % to 30 W/mK with 25 % B doping. When graphene is doped with N, the thermal conductivity decreases to 4 W/mK and 55 W/mK for 12.5 % and 25 % doping concentration, respectively. We have found that the thermal conductivity of doped graphene show less sensitivity to change in temperature. It has also been shown that the thermal conductivity of graphene can be tuned with doping and has a strong dependence on doping concentration.Comment: Accepted for publication in Material Research Expres

    Quark--antiquark states and their radiative transitions in terms of the spectral integral equation. {\Huge II.} Charmonia

    Full text link
    In the precedent paper of the authors (hep-ph/0510410), the bbˉb\bar b states were treated in the framework of the spectral integral equation, together with simultaneous calculations of radiative decays of the considered bottomonia. In the present paper, such a study is carried out for the charmonium (ccˉ)(c\bar c) states. We reconstruct the interaction in the ccˉc\bar c-sector on the basis of data for the charmonium levels with JPC=0+J^{PC}=0^{-+}, 11^{--}, 0++0^{++}, 1++1^{++}, 2++2^{++}, 1+1^{+-} and radiative transitions ψ(2S)γχc0(1P)\psi(2S)\to\gamma\chi_{c0}(1P), γχc1(1P)\gamma\chi_{c1}(1P), γχc2(1P)\gamma\chi_{c2}(1P), γηc(1S)\gamma\eta_{c}(1S) and χc0(1P)\chi_{c0}(1P), χc1(1P)\chi_{c1}(1P), χc2(1P)γJ/ψ\chi_{c2}(1P)\to\gamma J/\psi. The ccˉc\bar c levels and their wave functions are calculated for the radial excitations with n6n\le 6. Also, we determine the ccˉc\bar c component of the photon wave function using the e+ee^+e^- annihilation data: e+eJ/ψ(3097)e^+e^- \to J/\psi(3097), ψ(3686)\psi(3686), ψ(3770)\psi(3770), ψ(4040)\psi(4040), ψ(4160) \psi(4160), ψ(4415)\psi(4415) and perform the calculations of the partial widths of the two-photon decays for the n=1n=1 states: ηc0(1S)\eta_{c0}(1S), χc0(1P)\chi_{c0}(1P), χc2(1P)γγ\chi_{c2}(1P)\to\gamma\gamma, and n=2n=2 states: ηc0(2S)γγ\eta_{c0}(2S)\to\gamma\gamma, χc0(2P)\chi_{c0}(2P), χc2(2P)γγ\chi_{c2}(2P)\to \gamma\gamma. We discuss the status of the recently observed ccˉc\bar c states X(3872) and Y(3941): according to our results, the X(3872) can be either χc1(2P)\chi_{c1}(2P) or ηc2(1D)\eta_{c2}(1D), while Y(3941) is χc2(2P)\chi_{c2}(2P).Comment: 24 pages, 9 figure

    Interplay of quark and meson degrees of freedom in a near-threshold resonance

    Get PDF
    We investigate the interplay of quark and meson degrees of freedom in a physical state representing a near-threshold resonance for the case of a single continuum channel. We demonstrate that such a near-threshold resonance may possess quite peculiar properties if both quark and meson dynamics generate weakly coupled near-threshold poles in the S-matrix. In particular, the scattering t-matrix may possess zeros in this case. We also discuss possible implications for production reactions as well as studies within lattice QCD.Comment: LaTeX2e, 11 pages, minor typo corrections, to appear in Eur.Phys.J.

    Spin identification of the Randall-Sundrum resonance in lepton-pair production at the LHC

    Full text link
    The determination of the spin of the quantum states exchanged in the various non-standard interactions is a relevant aspect in the identification of the corresponding scenarios. We discuss the identification reach at LHC on the spin-2 of the lowest-lying Randall-Sundrum resonance, predicted by gravity with one warped extra dimension, against spin-1 and spin-0 non-standard exchanges with the same mass and producing the same number of events in the cross section. We focus on the angular distributions of leptons produced in the Drell-Yan process at the LHC, in particular we use as basic observable a normalized integrated angular asymmetry A_{CE}. Our finding is that the 95% C.L. identification reach on the spin-2 of the RS resonance (equivalently, the exclusion reach on both the spin-1 and spin-0 hypotheses for the peak) is up to a resonance mass scale of the order of 1.0 or 1.6 TeV in the case of weak coupling between graviton excitations and SM particles (k/{\bar M}_{Pl}=0.01) and 2.4 or 3.2 TeV for larger coupling constant (k/{\bar M}_{Pl}=0.1) for a time-integrated LHC luminosity of 10 or 100 fb^{-1}, respectively. Also, some comments are given on the complementary r\^oles of the angular analysis and the eventual discovery of the predicted second graviton excitation in the identification of the RS scenario.Comment: 27 pages, 11 figures. v2: References added, clarifications; version to appear in PR
    corecore