487 research outputs found

    Fuzzy Computing for Control of Aero Gas Turbine Engines .

    Get PDF
    Many methods, techniques and procedures available for designing the control system of plants and processes, are applied only after knowing accurately the plant or process to be controlled. However, in some complex situations where plants/processes cannot be accurately modelled, and especially where their control has human interaction, controller design may not be completely satisfactory. In such cases, it has been found that control decisions can be made on the basis of heuristic/linguistic measures or fuzzy algorithms. Fuzzy set principles have been used in controlling various plants/processes ranging from a laboratory steam engine to an autopilot, including an aero gas turbine engine engine for which the response of the engine speed for a fuzzy input of fuel flow has been studied. In this paper, certain stipulations and logic are suggested for the control of the total gas turbine engine. A case study of a single spool aero gas turbine engine with one of its state variables varied by heuristic logic is presented

    Evaluation of System of Rice Intensification (SRI) in rice (Oryza sativa) - groundnut (Arachis hypogaea) system under Island ecosystem

    Get PDF
    Field experiment was conducted during wet and dry seasons of 2007-09 at Field Crops Research Farm of Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands to evaluate System of Rice Intensification (SRI) in rice and its residual effect on groundnut in rice (Oryza sativa L.) – groundnut (Arachis hypogaea L.) systems. Time of planting, spacing and nitrogen practices evaluated significantly influenced the yield attributes and yield of rice, while the residual effect of N management practices had a positive influence on the yield attributes and yield of succeeding groundnut. Early planting in second fortnight of June with 20 cm × 20 cm spacing recorded higher panicles/m2 (9.1 %), higher number of filled grains/ panicle (108), higher grain yield (4 678 kg/ha), about 3% higher REY, productivity (26.8 kg/ha/day), and total profitability (` 62 882/ha) compared to the same time of planting with wider spacing (25 cm × 25 cm). Though application of 100% Recommended Dose of Nitrogen (RDN) through urea recorded highest grain yield (4 465 kg/ha) of rice, it was comparable with 50% RDN through Gliricidia + 50% RDN through urea and 75% RDN through Gliricidia + 25% RDN through urea. Application of 50% RDN through Gliricidia + 50% RDN recorded nearly 6% higher REY and ` 6 565/ha more profitability higher output energy in rice-groundnut sequence compared to application of 100% RDN through urea. N management practices of rice, in the crop sequence of rice- groundnut were found to improve the soil nitrogen status. Early planting of rice in second fortnight of June at 20 cm × 20 cm with the application of 50% RDN through Gliricidia + 50% RDN through urea can be recommended for achieving higher productivity, profitability and energy use efficiency of rice - groundnut system in Island ecosystem

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.

    Phase coexistence and electric-field control of toroidal order in oxide superlattices

    Get PDF
    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO>3/SrTiO>3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a>1/a>2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.A.R.D. acknowledges support from the Army Research Office under grant W911NF-14-1-0104 and the Department of Energy, Office of Science, Office of Basic Energy Sciences under grant no. DE-SC0012375 for synthesis and structural study of the materials. Z.H. acknowledges support from NSF-MRSEC grant number DMR-1420620 and NSF-MWN grant number DMR-1210588. A.K.Y. acknowledges support from the Office of Basic Energy Sciences, US Department of Energy DE-AC02-05CH11231. C.T.N. acknowledge support from the Office of Basic Energy Sciences, US Department of Energy DE-AC02-05CH11231. S.L.H. acknowledges support from the National Science Foundation under the MRSEC programme (DMR-1420620). M.R.M. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant number DGE-1106400. K.-D.P., V.K. and M.B.R. acknowledge support from the US Department of Energy, Office of Basic Sciences, Division of Material Sciences and Engineering, under Award No. DE-SC0008807. A.F. acknowledges support from the Swiss National Science Foundation. P.G.-F. and J.J. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness through grant number FIS2015-64886-C5-2-P. J.I. is supported by the Luxembourg National Research Fund (Grant FNR/C15/MS/10458889 NEWALLS). L.-Q.C. is supported by the US Department of Energy, Office of Basic Energy Sciences under Award FG02-07ER46417. R.R. and L.W.M. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative, under grant GBMF5307. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-C02-05CH11231. Nanodiffraction measurements were supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Electron microscopy of superlattice structures was performed at the Molecular Foundry at Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05CH11231).Peer Reviewe

    Dynamic Nuclear Polarization NMR Spectroscopy Allows High-Throughput Characterization of Microporous Organic Polymers

    Get PDF
    Dynamic nuclear polarization (DNP) solid-state NMR was used to obtain natural abundance 13C and 15N CP MAS NMR spectra of microporous organic polymers with excellent signal-to-noise ratio, allowing for unprecedented details in the molecular structure to be determined for these complex polymer networks. Sensitivity enhancements larger than 10 were obtained with bis-nitroxide radical at 14.1 T and low temperature (∼105 K). This DNP MAS NMR approach allows efficient, high-throughput characterization of libraries of porous polymers prepared by combinatorial chemistry methods
    corecore