1,336 research outputs found

    Application of finite-element-based solution technologies for viscoplastic structural analyses

    Get PDF
    Finite-element solution technology developed for use in conjunction with advanced viscoplastic models is described. The development of such solution technology is necessary for performing stress/life analyses of engineering structural problems where the complex geometries and loadings make the conventional analytical solutions difficult. The versatility of the solution technology is demonstrated by applying it to viscoplastic models possessing different mathematical structures and encompassing isotropic and anisotropic material. The computational results qualitatively replicate deformation behavior observed in experiments on prototypical structural components

    Finite element analysis of structural components using viscoplastic models with application to a cowl lip problem

    Get PDF
    The viability of advanced viscoplastic models for nonlinear finite element analyses of structural components is investigated. Several uniaxial and a multiaxial problem are analyzed using the finite element implementation of Freed's viscoplastic model. Good agreement between the experimental and calculated uniaxial results validates the finite element implementation and gives confidence to apply it to more complex multiaxial problems. A comparison of results for a sample structural component (the cowl lip of a hypersonic engine inlet) with the earlier elastic, elastic-plastic, and elastic-plastic-creep analyses available in the literature shows that the elastic-viscoplastic analyses yield more reasonable stress and strain distributions. Finally, the versatility of the finite-element-based solution technology presented herein is demonstrated by applying it to another viscoplastic model

    Finite element implementation of viscoplastic models

    Get PDF
    A brief description of the implementation in MARK, the general purpose finite element structural analysis code, of two viscoplastic models developed by Robinson is given. One model is for isotropic materials and the other is for metal matrix composites. Also presented are analytical results obtained for hot section components using these models

    Finite element implementation of Robinson's unified viscoplastic model and its application to some uniaxial and multiaxial problems

    Get PDF
    A description of the finite element implementation of Robinson's unified viscoplastic model into the General Purpose Finite Element Program (MARC) is presented. To demonstrate its application, the implementation is applied to some uniaxial and multiaxial problems. A comparison of the results for the multiaxial problem of a thick internally pressurized cylinder, obtained using the finite element implementation and an analytical solution, is also presented. The excellent agreement obtained confirms the correct finite element implementation of Robinson's model

    Finite element (MARC) solution technologies for viscoplastic analyses

    Get PDF
    A need for development of realistic constitutive models for structural components operating at high temperatures, accompanied by appropriate solution technologies for stress/life analyses of these components is studied. Viscoplastic models provide a better description of inelastic behavior of materials, but their mathematical structure is very complex. The highly nonlinear and stiff nature of the constitutive equations makes analytical solutions difficult. Therefore, suitable solution, finite element or other numerical, technologies must be developed to make these models adaptable for better and rational designs of components. NASA-Lewis has developed several solution technologies and successfully applied them to the solution of a number of uniaxial and multiaxial problems. Some of these solution technologies are described along with the models and representative results. The solution technologies developed and presented encompass a wide range of models, such as, isotropic, anisotropic, metal matrix composites, and single crystal models

    Analysis of damage in MMC components using an internal state variable model

    Get PDF
    A metal-matrix composite (MMC) model was developed which includes the concept of damage evolution. The evolution of damage is assumed to be governed by a Kachanov-type equation. This viscoplastic damage model was implemented in the finite element code, MARC. Both uniaxial (creep) and multiaxial (an internally pressurized thick-walled cylinder) problems were analyzed using this implementation. Some preliminary results are presented which consider monotonic (constant) loadings. The creep curves including damage for four fiber orientations are presented. As expected, the minimum creep occurs when load is applied in a direction parallel to the fibers. The tangential strains at the inner radius of a thick-walled MMC-cylinder for four fiber orientations are shown with damage included. The cylinder exhibits the maximum creep resistance when the fibers are oriented in the circumferential direction, perpendicular to the axis of the cylinder. Time-to-failure for the thick-walled cylinder for the same fiber orientation angles is also shown. As expected, the life of the cylinder can be increased by orientating the fibers in the circumferential direction, perpendicular to the axis of the cylinder. The results, although qualitative, indicate that significant benefits in creep-resistance and service life can be achieved by using MMC materials as structural materials for high-temperature design

    Structural response of SSME turbine blade airfoils

    Get PDF
    Reusable space propulsion hot gas-path components are required to operate under severe thermal and mechanical loading conditions. These operating conditions produce elevated temperature and thermal transients which results in significant thermally induced inelastic strains, particularly, in the turbopump turbine blades. An inelastic analysis for this component may therefore be necessary. Anisotropic alloys such as MAR M-247 or PWA-1480 are being considered to meet the safety and durability requirements of this component. An anisotropic inelastic structural analysis for an SSME fuel turbopump turbine blade was performed. The thermal loads used resulted from a transient heat transfer analysis of a turbine blade. A comparison of preliminary results from the elastic and inelastic analyses is presented

    Quick Test for Quality Deterioration in Processed Foods

    Get PDF
    A quick test for quality deterioration of milk powder, refined oil and atta, based on the indicator test solution was studied. The indicator test solution comprising NaOH and bromotIlytnol blue indicator remains stable for 6 mont1ls itl glass bottles. Depending on the acidity of the Sample, the colour changed from blue to light blue to green to yellow. The concentration of the indicator test solution is optimised for each product, viz., 4 ml for milk powder and refined oil and 2 ml for atta, to which 1 ml aqueous sample or oil is added which gives the colour change. The appearance of green colour is considered tIle cutoff point for inferior quality alld is based on the limits specified by the Bureau of Indian Standards for these products. The test has proved its efficacy in quality checking during storage of milk powder and deep fat frying of products in refined oils
    corecore