1 research outputs found

    An analysis of passive earth pressure modification due to seepage flow effects

    Get PDF
    Using an assumed vertical retaining wall with a drainage system along the soil-structure interface, this paper analyses the effect of anisotropic seepage flow on the development of passive earth pressure. Extremely unfavourable seepage flow inside the backfill, perhaps due to heavy rainfall, will dramatically increase the active earth pressure while reducing the passive earth pressure; thus increasing the probability of instability of the retaining structure. In this paper, a trial and error analysis based on limit equilibrium is applied to identify the optimum failure surface. The flow field is computed using Fourier series expansion, and the effective reaction force along the curved failure surface is obtained by solving a modified Kötter equation considering the effect of seepage flow. This approach correlates well with other existing results. For small values of both the internal friction angle and the interface friction angle, the failure surface can be appropriately simplified with a planar approximation. A parametric study indicates that the degree of anisotropic seepage flow affects the resulting passive earth pressure. In addition, incremental increases in the effective friction angle and interface friction both lead to an increase in the passive earth pressure.National Key Basic Research Program of China (No. 2015CB057801), the National Key R & D program of China (No. 2016YFC0800204), and Natural Science Foundation of China (Nos. 51578499 & 51761130078)
    corecore