43 research outputs found

    Effect of cellulose and lignin content on the mechanical properties and drop-weight impact damage of injection-molded polypropylene-flax and -pine fiber composites

    Get PDF
    Designing bio-composites for structural applications requires a thorough understanding of their mechanical behavior. In this study, we examined the differences in the tensile strength and drop-weight impact response between polypropylene reinforced with flax fibers and that reinforced with pinewood short fibers, as both fibers differ in composition (cellulose, hemicellulose, and lignin) and length-to-diameter ratio. We found that flax fibers, which have higher cellulose content and are twice as long as pine fibers, increased the stiffness and shock resistance of bio-composite materials. However, pine fibers, which contain more lignin, showed increased material ductility and energy absorption. Impulse excitation, acoustic emission and micro-CT techniques were used to evaluate the post-impact mechanical properties and the contribution of each damage mechanism to the final material failure (tearing). The experimental results were used to validate a model based on finite elements. Our results revealed that the experimental and finite-element analyses were in good agreement

    Design and experimental implementation of voltage control scheme using the coefficient diagram method based PID controller for two-level boost converter with photovoltaic system

    Get PDF
    Introduction. Currently, in the solar energy systems and a variety of electrical applications, the power converters are essential part. The main challenge for similar systems is controller design. In the literature, the PID controller has proved its effectiveness in many industrial applications, but determining its parameters remains one of the challenges in control theory field. The novelty of the work resides in the design and experimental implementation of a two-level boost DC-DC converter controlled by a PID controller for photovoltaic (PV) maximum power extraction. Purpose. Analysis and control of the two-level boost topology with renewable energy source and design of the PID controller parameters using simple and accurate method. Methods. PID coefficients are optimized using Coefficient Diagram Method (CDM) in the MATLAB environment. Results. A mathematical model of a two-level boost converter with PID controller and PV energy source was developed and analyzed. The model allows to design the controller parameters of the proposed system. Practical value. A prototype steered by the proposed CDM-PID controller was tested using an Arduino embedded board. A comparison between the simulation results and the experimental one is presented. The obtained results illustrate that the experimental results match the simulation closely, and the proposed CDM-PID controller provides a fast and precise results.Вступ. В даний час перетворювачі потужності є невід’ємною частиною сонячних енергетичних систем та різних електричних пристроїв. Основною проблемою для таких систем є проектування контролера. У літературі ПІД-регулятор довів свою ефективність у багатьох промислових застосуваннях, але визначення його параметрів залишається однією з проблем у галузі теорії управління. Новизна роботи полягає у розробці та експериментальній реалізації дворівневого підвищувального перетворювача постійного струму, керованого ПІД-регулятором, для отримання максимальної потужності фотоелектричних пристроїв. Мета. Аналіз та управління дворівневою топологією підвищення з використанням відновлюваного джерела енергії та розрахунок параметрів ПІД-регулятора простим та точним методом. Методи. Коефіцієнти ПІД оптимізуються за допомогою методу діаграми коефіцієнтів (CDM) у середовищі MATLAB. Отримані результати. Розроблено та проаналізовано математичну модель дворівневого підвищувального перетворювача з ПІД-регулятором та фотоелектричним джерелом енергії. Модель дозволяє спроєктувати параметри контролера пропонованої системи. Практична цінність. Прототип, керований пропонованим контролером CDM-PID, протестували з використанням вбудованої плати Arduino. Наведено порівняння результатів моделювання з експериментальними даними. Отримані результати показують, що експериментальні результати близько відповідають моделюванню, а пропонований CDM-ПІД-регулятор забезпечує швидкі та точні результати

    Influence of UV irradiation on mechanical properties and drop-weight impact performance of polypropylene biocomposites reinforced with short flax and pine fibers

    Get PDF
    The design of biocomposite structures for outdoor applications should consider the influence of ultraviolet (UV) irradiation on the mechanical performances to more accurately determine their durability characteristics and prevent significant damage. Ultraviolet radiation causes the discoloration, surface roughness, mass loss, and degradation of the mechanical properties of biocomposites. In this study, the flexural strength and low-velocity impact response of polypropylene reinforced with short flax or pine fibers, which differed with respect to their physical and chemical properties, were investigated. Flax fibers are twice the length of pine fibers, and exhibit higher cellulose contents. Moreover, flax fibers have been demonstrated to increase the flexural strength and impact resistance of biocomposites. However, under UV irradiation, pine fibers containing more lignin dampened the degradation. Under photo-oxidative conditions, lignin is degraded to protect crystalline cellulose by acting as a light-absorbing compound. Non-destructive techniques such as Fourier transform infrared spectroscopy (FTIR), colorimetry, confocal imaging, acoustic emission, and CT scanning were therefore used to evaluate the effect of UV radiation on the chemical properties, color change, surface roughness, bending behavior, and drop-impact damage

    Fuzzy logic response to Young's modulus characterization of a flax-epoxy natural fiber composite

    Get PDF
    Most design approaches use the experimental elastic modulus as input variable to describe the material properties. In most cases the uncertainty and the variability of the modulus are neglected. In the worst case this can lead to bad estimations of the material performance and more iterations to the final solution. The purpose of this work is to reconcile the Young's modulus of three configurations ([0]10, [0]20 and [±45]10) of flax-epoxy composites obtained by different techniques including acoustic impulse, tensile and bending tests, according to ISO and ASTM standards. Results obtained with these techniques all show different levels of variability in Young's modulus values. A fuzzy logic model is used to obtain a simplified view of linguistic variables representing the modulus of elasticity and to reconcile different modules by including the uncertainty inherent to the different measuring techniques. Results have shown a strong potential for fuzzy logic to reconcile the disparity of Young modulus of natural fiber composites. © 2015 Elsevier Ltd

    On the influence of the exciton-blocking layer on the organic multilayer cells properties

    Get PDF
    The performances of organic photovoltaic cells based on the layer couple electron donor/electron acceptor (ED/EA) are significantly improved when an exciton blocking layer (EBL) is inserted between the organic acceptor and the cathode. A new material, the (Z)-5-(4-chlorobenzylidene)-3-(2-ethoxyphenyl)-2-thioxothiazolidin-4-one, that we called (CBBTZ), has been synthesized, characterized and probed as EBL. The energy levels corresponding to the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the CBBTZ have been determined from the first oxidation and reduction potential respectively, using cyclic voltametric (CV) measurements. From CV curves, CBBTZ in dichloromethane showed a one electron reversible reduction and oxidation waves. The values of its HOMO and LUMO have been estimated to be 6.42 eV and 3.42 eV respectively. Such values show that CBBTZ could be probed as EBL in organic solar cells based on the ED/EA couple copper phthalocyanine(CuPc)/fullerene (C60). The photovoltaic solar cells have been obtained by sequential deposition under vacuum of the different films. The different thin film thicknesses were measured in situ by a quartz monitor. Multilayer solar cells ITO/Au/CuPc/C60/EBL/Al have been probed, where EBL is the aluminium tris(8-hydroxyquinoline) (Alq3), the CBBTZ, the 2-(4-byphenylyl)-5-(4-tert-buthylphenyl)-1,3,4-oxadiazole (butyl PBD) or the bathocuproine (BCP). The optimum film thickness is 8–9 nm whatever the EBL used. When obtained in the same run, the averaged efficiency of the cells using the CBBTZ is of the same order of magnitude than that obtained with BCP and higher than that achieved with Alq3 or butyl PBD. It is shown by XPS study that some aluminium of the cathode is present in the buffer layer. This aluminium could justify the ability of the electrons to cross the insulating exciton blocking layer thick of 9 nm

    Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria

    No full text
    Soil losses must be quantified over watersheds in order to set up protection measures against erosion. The main objective of this paper is to quantify and to map soil losses in the Wadi Sahouat basin (2140 km(2)) in the north-west of Algeria, using the Revised Universal Soil Loss Equation (RUSLE) model assisted by a Geographic Information System (GIS) and remote sensing. The Model Builder of the GIS allowed the automation of the different operations for establishing thematic layers of the model parameters: the erosivity factor (R), the erodibility factor (K), the topographic factor (LS), the crop management factor (C), and the conservation support practice factor (P). The average annual soil loss rate in the Wadi Sahouat basin ranges from 0 to 255 t ha(-1) year(-1), maximum values being observed over steep slopes of more than 25% and between 600 and 1000 m elevations. 3.4% of the basin is classified as highly susceptible to erosion, 4.9% with a medium risk, and 91.6% at a low risk. Google Earth reveals a clear conformity with the degree of zones to erosion sensitivity. Based on the soil loss map, 32 subbasins were classified into three categories by priority of intervention: high, moderate, and low. This priority is available to sustain a management plan against sediment filling of the Ouizert damat the basin outlet. The method enhancing the RUSLE model and confrontation with Google Earth can be easily adapted to other watersheds

    Acaricidal activity of flavonoids extract of Borago officinalis L. (Boraginaceae) against brown dog tick, Rhipicephalus sanguineus (Latreille, 1806)

    No full text
    International audienceBorago officinalis L. (Boraginaceae) is a plant of the Boraginaceae family, used in Algeria for food and medicinal purposes. This study reports the effect of flavonoids extracted from the aerial part of Borago officinalis L. (Boraginaceae) on the larvae and engorged adult females of the brown dog tick Rhipicephalus sanguineus (Latreille, 1806) using adults immersion test (AIT) and larval immersion test (LIT). For this purpose, the larvae and engorged female of Rhipicephalus sanguineus (Latreille, 1806) were exposed to serial dilutions of flavonoids extract (50 mg/ml, 25 mg/ml, 12.5 mg/ml and 6.25 mg/ml) using ``dipping method'' in vitro. The plant extract was obtained by fractionation using appropriate solvents. The extraction yield is 22% with a flavonoids concentration equal to 129.12 mu g equivalent of quercetin/ml of the extract. The chromatographic analysis by high performance thin layer chromatography (HPTLC) reveals the presence of gallic acid, vanillic acid, kaempferol, dihydroxybenzoic and quercetin. The results obtained show that the flavonoids extract of Borago officunalis L. (Boraginaceae) considerably reduces the oviposition and the hatching rate of the eggs of Rhipicephalus sanguineus (Latreille, 1806) and was shown to be toxic against newly hatched larvae of Rhipicephalus sanguineus (Latreille, 1806) (P < 0.05)
    corecore