35 research outputs found

    How Low Can We Go? The Implications of Delayed Ratcheting and Negative Emissions Technologies on Achieving Well Below 2 °C

    Get PDF
    Pledges embodied in the nationally determined contributions (NDCs) represent an interim step from a global “no policy” path towards an optimal long-term global mitigation path. However, the goals of the Paris Agreement highlight that current pledges are insufficient. It is, therefore, necessary to ratchet-up parties’ future mitigation pledges in the near-term. The ambitious goals of remaining well below 2 °C and pursuing reductions towards 1.5 °C mean that any delay in ratcheting-up commitments could be extremely costly or may even make the targets unachievable. In this chapter, we consider the impacts of delaying ratcheting until 2030 on global emissions trajectories towards 2 °C and 1.5 °C, and the role of offsets via negative emissions technologies (NETs). The analysis suggests that delaying action makes pursuing the 1.5 °C goal especially difficult without extremely high levels of negative emissions technologies (NETs), such as carbon capture and storage combined with bioenergy (BECCS). Depending on the availability of biomass, other NETs beyond BECCS will be required. Policymakers must also realise that the outlook for fossil fuels are closely linked to the prospects for NETs. If NETs cannot be scaled, the levels of fossil fuels suggested in this analysis are not compatible with the Paris Agreement goals i.e. there are risks of lock-in to a high fossil future. Decision makers must, therefore, comprehend fully the risks of different strategies

    Silicon particles as trojan horses for potential cancer therapy

    Get PDF
    [EN] Background: Porous silicon particles (PSiPs) have been used extensively as drug delivery systems, loaded with chemical species for disease treatment. It is well known from silicon producers that silicon is characterized by a low reduction potential, which in the case of PSiPs promotes explosive oxidation reactions with energy yields exceeding that of trinitrotoluene (TNT). The functionalization of the silica layer with sugars prevents its solubilization, while further functionalization with an appropriate antibody enables increased bioaccumulation inside selected cells. Results: We present here an immunotherapy approach for potential cancer treatment. Our platform comprises the use of engineered silicon particles conjugated with a selective antibody. The conceptual advantage of our system is that after reaction, the particles are degraded into soluble and excretable biocomponents. Conclusions: In our study, we demonstrate in particular, specific targeting and destruction of cancer cells in vitro. The fact that the LD50 value of PSiPs-HER-2 for tumor cells was 15-fold lower than the LD50 value for control cells demonstrates very high in vitro specificity. This is the first important step on a long road towards the design and development of novel chemotherapeutic agents against cancer in general, and breast cancer in particular.The authors acknowledge financial support from the following projects FIS2009-07812, MAT2012-35040, PROMETEO/2010/043, CTQ2011-23167, CrossSERS, FP7 MC-IEF 329131, and HSFP (project RGP0052/2012) and Medcom Tech SA. Xiang Yu acknowledges support by the Chinese government (CSC, Nr. 2010691036).Fenollosa Esteve, R.; Garcia-Rico, E.; Alvarez, S.; Alvarez, R.; Yu, X.; Rodriguez, I.; Carregal-Romero, S.... (2014). Silicon particles as trojan horses for potential cancer therapy. Journal of Nanobiotechnology. 12:1-10. https://doi.org/10.1186/s12951-014-0035-7S11012Prasad PN: Introduction to Nanomedicine and Nanobioengineering. Wiley, New York, 2012.Randall CL, Leong TG, Bassik N, Gracias DH: 3D lithographically fabricated nanoliter containers for drug delivery. Adv Drug Del Rev. 2007, 59: 1547-1561. 10.1016/j.addr.2007.08.024.Reibetanz U, Chen MHA, Mutukumaraswamy S, Liaw ZY, Oh BHL, Venkatraman S, Donath E, Neu BR: Colloidal DNA carriers for direct localization in cell compartments by pH sensoring. Biogeosciences. 2010, 11: 1779-1784.Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M: Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nano. 2008, 3: 151-157. 10.1038/nnano.2008.34.Park J-H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009, 8: 331-336. 10.1038/nmat2398.Hong C, Lee J, Son M, Hong SS, Lee C: In-vivo cancer cell destruction using porous silicon nanoparticles. Anti-Cancer Drugs. 2011, 22: 971-977. 910.1097/CAD.1090b1013e32834b32859cCanham LT: Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7. Book Device Comprising Resorbable Silicon for Boron Capture Neutron Therapy. UK Patent Nr. 0302283.7 (Editor ed.^eds.). 2003, UK Patent Nr. 0302283.7, CityXiao L, Gu L, Howell SB, Sailor MJ: Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano. 2011, 5: 3651-3659. 10.1021/nn1035262.Gil PR, Parak WJ: Composite nanoparticles take Aim at cancer. ACS Nano. 2008, 2: 2200-2205. 10.1021/nn800716j.Gomella LG: Is interstitial hyperthermia a safe and efficacious adjunct to radiotherapy for localized prostate cancer?. Nat Clin Pract Urol. 2004, 1: 72-73. 10.1038/ncpuro0041.Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A: Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol. 2011, 103: 317-324. 10.1007/s11060-010-0389-0.Lal S, Clare SE, Halas NJ: Nanoshell-enabled photothermal cancer therapy: Impending clinical impact. Acc Chem Res. 2008, 41: 1842-1851. 10.1021/ar800150g.Lee C, Kim H, Hong C, Kim M, Hong SS, Lee DH, Lee WI: Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation. J Mater Chem. 2008, 18: 4790-4795. 10.1039/b808500e.Osminkina LA, Gongalsky MB, Motuzuk AV, Timoshenko VY, Kudryavtsev AA: Silicon nanocrystals as photo- and sono-sensitizers for biomedical applications. Appl Phys B. 2011, 105: 665-668. 10.1007/s00340-011-4562-8.Jain PK, Huang X, El-Sayed IH, El-Sayed MA: Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008, 41: 1578-1586. 10.1021/ar7002804.Serda RE, Godin B, Blanco E, Chiappini C, Ferrari M: Multi-stage delivery nano-particle systems for therapeutic applications. Biochim Biophys Acta. 1810, 2011: 317-329.Xu R, Huang Y, Mai J, Zhang G, Guo X, Xia X, Koay EJ, Qin G, Erm DR, Li Q, Liu X, Ferrari M, Shen H: Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small. 2013, 9: 1799-1808. 10.1002/smll.201201510.Park JS, Kinsella JM, Jandial DD, Howell SB, Sailor MJ: Cisplatin-loaded porous Si microparticles capped by electroless deposition of platinum. Small. 2011, 7: 2061-2069. 10.1002/smll.201100438.Xue M, Zhong X, Shaposhnik Z, Qu Y, Tamanoi F, Duan X, Zink JI: pH-operated mechanized porous silicon nanoparticles. J Am Chem Soc. 2011, 133: 8798-8801. 10.1021/ja201252e.Canham LT: Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater. 1995, 7: 1033-1037. 10.1002/adma.19950071215.Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Cresswell RG, Di Tada ML, Liu K: Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorganic Biochem. 1998, 69: 177-180. 10.1016/S0162-0134(97)10016-2.Shabir Q, Pokale A, Loni A, Johnson DR, Canham LT, Fenollosa R, Tymczenko M, Rodr guez I, Meseguer F, Cros A, Cantarero A: Medically biodegradable hydrogenated amorphous silicon microspheres. Silicon. 2011, 3: 173-176. 10.1007/s12633-011-9097-4.Chen Y, Wan Y, Wang Y, Zhang H, Jiao Z: Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomed. 2011, 6: 2321-2326.Mackowiak SA, Schmidt A, Weiss V, Argyo C, von Schirnding C, Bein T, Bräuchle C: Targeted drug delivery in cancer cells with Red-light photoactivated mesoporous silica nanoparticles. Nano Lett. 2013, 13: 2576-2583. 10.1021/nl400681f.Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI: Mesoporous silica nanoparticles in biomedical applications. Chem Soc Rev. 2012, 41: 2590-2605. 10.1039/c1cs15246g.O Mara WC, Herring B, Hunt P: Handbook of Semiconductor Silicon Technology. Noyes Publication, New Jersey, 1990.Mikulec FV, Kirtland JD, Sailor MJ: Explosive nanocrystalline porous silicon and its Use in atomic emission spectroscopy. Adv Mater. 2002, 14: 38-41. 10.1002/1521-4095(20020104)14:13.0.CO;2-Z.Clement D, Diener J, Gross E, Kunzner N, Timoshenko VY, Kovalev D: Highly explosive nanosilicon-based composite materials. Phys Stat Sol A. 2005, 202: 1357-1359. 10.1002/pssa.200461102.Canham LT: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1990, 57: 1046-1049. 10.1063/1.103561.Canham LT: Properties of Porous Silicon. INSPEC, United Kindom, 1997.Heinrich JL, Curtis CL, Credo GM, Sailor MJ, Kavanagh KL: Luminescent colloidal silicon suspensions from porous silicon. Science. 1992, 255: 66-68. 10.1126/science.255.5040.66.Littau KA, Szajowski PJ, Muller AJ, Kortan AR, Brus LE: A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J Phys Chem. 1993, 97: 1224-1230. 10.1021/j100108a019.Menz WJ, Shekar S, Brownbridge GPE, Mosbach S, Kōrmer R, Peukert W, Kraft M: Synthesis of silicon nanoparticles with a narrow size distribution: a theoretical study. J Aerosol Sci. 2012, 44: 46-61. 10.1016/j.jaerosci.2011.10.005.Swihart MT, Girshick SL: Thermochemistry and kinetics of silicon hydride cluster formation during thermal decomposition of silane. J Phys Chem B. 1998, 103: 64-76. 10.1021/jp983358e.Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F: Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. J Mater Chem. 2010, 20: 5210-5214. 10.1039/c0jm00079e.Ramiro-Manzano F, Fenollosa R, Xifré-Pérez E, Garín M, Meseguer F: Porous silicon microcavities based photonic barcodes. Adv Mater. 2011, 23: 3022-3025. 10.1002/adma.201100986.Kastl L, Sasse D, Wulf V, Hartmann R, Mircheski J, Ranke C, Carregal-Romero S, Martínez-López JA, Fernández-Chacón R, Parak WJ, Elsasser HP, Rivera-Gil P: Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells. ACS Nano. 2013, 7: 6605-6618. 10.1021/nn306032k.Schweiger C, Hartmann R, Zhang F, Parak W, Kissel T, Rivera_Gil P: Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotech. 2012, 10: 28-10.1186/1477-3155-10-28.Sanles-Sobrido M, Exner W, Rodr guez-Lorenzo L, Rodríguez-Gonzílez B, Correa-Duarte MA, Álvarez-Puebla RA, Liz-Marzán LM: Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc. 2009, 131: 2699-2705. 10.1021/ja8088444.Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, Mackey J, Glaspy J, Chan A, Pawlicki M, Pinter T, Valero V, Liu MC, Sauter G, von Minckwitz G, Visco F, Bee V, Buyse M, Bendahmane B, Tabah-Fisch I, Lindsay MA, Riva A, Crown J: Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011, 365: 1273-1283. 10.1056/NEJMoa0910383.Agus DB, Gordon MS, Taylor C, Natale RB, Karlan B, Mendelson DS, Press MF, Allison DE, Sliwkowski MX, Lieberman G, Kelsey SM, Fyfe G: Phase I clinical study of pertuzumab, a novel HER dimerization inhibitor, in patients with advanced cancer. J Clin Oncol. 2005, 23: 2534-2543. 10.1200/JCO.2005.03.184.Colombo M, Mazzucchelli S, Montenegro JM, Galbiati E, Corsi F, Parak WJ, Prosperi D: Protein oriented ligation on nanoparticles exploiting O6-alkylguanine-DNA transferase (SNAP) genetically encoded fusion. Small. 2012, 8: 1492-1497. 10.1002/smll.201102284.Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX: Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004, 5: 317-328. 10.1016/S1535-6108(04)00083-2.Paris L, Cecchetti S, Spadaro F, Abalsamo L, Lugini L, Pisanu ME, Lorio E, Natali PG, Ramoni C, Podo F: Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells. Breast Cancer Res. 2010, 12: R27-10.1186/bcr2575.Fenollosa R, Meseguer F, Tymczenko M: Silicon colloids: from microcavities to photonic sponges. Adv Mater. 2008, 20: 95-98. 10.1002/adma.200701589.Jasinski JM, Gates SM: Silicon chemical vapor deposition one step at a time: fundamental studies of silicon hydride chemistry. Acc Chem Res. 1991, 24: 9-15. 10.1021/ar00001a002.Xiao Q, Liu Y, Qiu Y, Zhou G, Mao C, Li Z, Yao Z-J, Jiang S: Potent antitumor mimetics of annonaceous acetogenins embedded with an aromatic moiety in the left hydrocarbon chain part. J Med Chem. 2010, 54: 525-533. 10.1021/jm101053k.Allman SA, Jensen HH, Vijayakrishnan B, Garnett JA, Leon E, Liu Y, Anthony DC, Sibson NR, Feizi T, Matthews S, Davis BG: Potent fluoro-oligosaccharide probes of adhesion in toxoplasmosis. ChemBioChem. 2009, 10: 2522-2529. 10.1002/cbic.200900425.Chambers DJ, Evans GR, Fairbanks AJ: Elimination reactions of glycosyl selenoxides. Tetrahedron. 2004, 60: 8411-8419. 10.1016/j.tet.2004.07.005.Tomabechi Y, Suzuki R, Haneda K, Inazu T: Chemo-enzymatic synthesis of glycosylated insulin using a GlcNAc tag. Bioorg Med Chem. 2010, 18: 1259-1264. 10.1016/j.bmc.2009.12.031.Pastoriza-Santos I, Gomez D, Perez-Juste J, Liz-Marzan LM, Mulvaney P: Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Phys Chem Chem Phys. 2004, 6: 5056-5060. 10.1039/b405157b

    International Thermonuclear Experimental Reactor (ITER)

    No full text

    Conceptual Design Study and Strategy Toward Fusion Demonstration Plants

    No full text

    Conceptual design of laser fusion reactor KOYO-fast

    No full text
    A conceptual design of the laser fusion reactor KOYO-F based on the fast ignition scheme is reported including the target design, the laser system and the design for chamber. A Yb-YAG ceramic laser operated at 200K is the primary candidate for the compression laser and an OPCPA system is the one for the ignition laser. The chamber is basically a wet wall type but the fire position is vertically off-set to simplify the protection scheme of the ceiling. The target consists of foam insulated, cryogenic DT shells with a LiPb, reentrant guide-cone
    corecore