288 research outputs found

    Validity and reliability of the Greek version of the Satisfaction with Life Scale (SWLS): Evidence from physically active college students

    Get PDF
    Physical activity has been found to be positively related to life satisfaction (McAuley et al., 2006; 2008). Such studies frequently used the Satisfaction with Life Scale (SWLS) to assess life satisfaction, which is one of the most widely used instruments. Although this five-item scale has been established to have sound psychometric properties, the validity of this instrument has not been examined in Greece. Therefore, the aims of the current study were to examine the factorial validity and reliability of the SWLS

    Laparoscopic Hernia Repair: a Two-Port Technique

    Get PDF
    Results of this study suggest that laparoscopic herniorrhaphy with a 2-port technique may allow a safe, efficient repair of ventral and incisional hernias

    Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription

    Get PDF
    Overactivation of the cAMP signal transduction pathway plays a central role in the pathogenesis of endocrine tumors. Genetic aberrations leading to increased intracellular cAMP or directly affecting PKA subunit expression have been identified in inherited and sporadic endocrine tumors, but are rare indicating the presence of nongenomic pathological PKA activation. In the present study, we examined the impact of hypoxia on PKA activation using human growth hormone (GH)-secreting pituitary tumors as a model of an endocrine disease displaying PKA-CREB overactivation. We show that hypoxia activates PKA and enhances CREB transcriptional activity and subsequently GH oversecretion. This is due to a previously uncharacterized ability of HIF-1α to suppress the transcription of the PKA regulatory subunit 2B (PRKAR2B) by sequestering Sp1 from the PRKAR2B promoter. The present study reveals a novel mechanism through which the transcription factor HIF-1α transduces environmental signals directly onto PKA activity, without affecting intracellular cAMP concentrations. By identifying a point of interaction between the cellular microenvironment and intracellular enzyme activation, neoplastic, and nonneoplastic diseases involving overactivated PKA pathway may be more efficiently targeted

    The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells

    Get PDF
    Rapamycin and its analogues have significant antiproliferative action against a variety of tumors. However, sensitivity to rapamycin is reduced by Akt activation that results from the ablative effects of rapamycin on a p70 S6K-induced negative feedback loop that blunts phosphoinositide 3-kinase (PI3K)-mediated support for Akt activity. Thus, sensitivity to rapamycin might be increased by imposing an upstream blockade to the PI3K/Akt pathway. Here, we investigated this model using the somatostatin analogue octreotide as a tool to decrease levels of activated Ser(473)-phosphorylated Akt (pAkt-Ser(473)) in pituitary tumor cells that express somatostatin receptors. Octreotide increased levels of phosphorylated insulin receptor substrate-1 that were suppressed by rapamycin, subsequently decreasing levels of pAkt-Ser(473) through effects on phosphotyrosine phosphatase SHP-1. Octreotide potentiated the antiproliferative effects of rapamycin in immortalized pituitary tumor cells or human nonfunctioning pituitary adenoma cells in primary cell culture, sensitizing tumor cells even to low rapamycin concentrations. Combined treatment of octreotide and rapamycin triggered G(1) cell cycle arrest, decreasing E2F transcriptional activity and cyclin E levels by increasing levels of p27/Kip1. These findings show that adjuvant treatment with a somatostatin analogue can sensitize pituitary tumor cells to the antiproliferative effects of rapamycin

    RSUME is implicated in tumorigenesis and metastasis of pancreatic neuroendocrine tumors

    Get PDF
    The factors triggering pancreatic neuroendocrine tumor (PanNET) progression are largely unknown. Here we investigated the role and mechanisms of the sumoylation enhancing protein RSUME in PanNET tumorigenesis. Immunohistochemical studies showed that RSUME is strongly expressed in normal human pancreas, in particular in β-cells. RSUME expression is reduced in insulinomas and is nearly absent in other types of PanNETs suggesting a role in PanNET tumorigenesis. In human pancreatic neuroendocrine BON1 cells, RSUME stimulates hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A), which are key components of tumor neovascularisation. In contrast, RSUME suppresses nuclear factor-κB (NF-κB) and its target interleukin-8 (IL-8). Correspondingly, PanNET cells with RSUME knockdown showed decreased HIF-1α activity and increased NF-κB and IL-8 production leading to a moderate reduction of VEGF-A release as reduced HIF-1α/VEGF-A production is partly compensated by NF-κB/IL-8-induced VEGF-A. Notably, RSUME stabilizes the tumor suppressor PTEN, which is frequently lost in PanNETs and whose absence is associated with metastasis formation. In vivo orthotopic transplantation of PanNET cells with or without RSUME expression into nude mice showed that PanNETs without RSUME have reduced PTEN expression, grow faster and form multiple liver metastases. In sum, RSUME differentially regulates key components of PanNET formation suggesting that the observed loss of RSUME in advanced PanNETs is critically involved in PanNET tumorigenesis, particularly in metastasis formation.Fil: Wu, Yonghe. Max Planck Institute of Psychiatry; AlemaniaFil: Tedesco, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Kristin, Lucia. Max Planck Institute of Psychiatry; AlemaniaFil: Schlitter, Anna M.. Universitat Technical Zu Munich; AlemaniaFil: Monteserin Garcia, Jose. Max Planck Institute of Psychiatry; AlemaniaFil: Esposito, Irene. Universitat Technical Zu Munich; AlemaniaFil: Auernhammer, Christoph J.. Universitat Technical Zu Munich; AlemaniaFil: Theodoropoulou, Marily. Max Planck Institute of Psychiatry; AlemaniaFil: Arzt, Eduardo Simon. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Renner, Ulrich. Max Planck Institute of Psychiatry; AlemaniaFil: Stalla, Günter K.. Max Planck Institute of Psychiatry; Alemani

    Electronic structure and magnetism of Mn doped GaN

    Full text link
    Mn doped semiconductors are extremely interesting systems due to their novel magnetic properties suitable for the spintronics applications. It has been shown recently by both theory and experiment that Mn doped GaN systems have a very high Curie temperature compared to that of Mn doped GaAs systems. To understand the electronic and magnetic properties, we have studied Mn doped GaN system in detail by a first principles plane wave method. We show here the effect of varying Mn concentration on the electronic and magnetic properties. For dilute Mn concentration, dd states of Mn form an impurity band completely separated from the valence band states of the host GaN. This is in contrast to the Mn doped GaAs system where Mn dd states in the gap lie very close to the valence band edge and hybridizes strongly with the delocalized valence band states. To study the effects of electron correlation, LSDA+U calculations have been performed. Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn spins is not decreased substantially for large Mn-Mn separation. Also, the exchange interactions are anisotropic in different crystallographic directions due to the presence or absence of connectivity between Mn atoms through As bonds.Comment: 6 figures, submitted to Phys. Rev.

    Ferromagnetism in Diluted Magnetic Semiconductor Heterojunction Systems

    Full text link
    Diluted magnetic semiconductors (DMSs), in which magnetic elements are substituted for a small fraction of host elements in a semiconductor lattice, can become ferromagnetic when doped. In this article we discuss the physics of DMS ferromagnetism in systems with semiconductor heterojunctions. We focus on the mechanism that cause magnetic and magnetoresistive properties to depend on doping profiles, defect distributions, gate voltage, and other system parameters that can in principle be engineered to yield desired results.Comment: 12 pages, 7 figures, review, special issue of Semicon. Sci. Technol. on semiconductor spintronic
    • …
    corecore