9,296 research outputs found

    Two-Phase Thermodynamic Model for Efficient and Accurate Absolute Entropy of Water from Molecular Dynamics Simulations

    Get PDF
    Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor−liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations

    Experiments in fault tolerant software reliability

    Get PDF
    The reliability of voting was evaluated in a fault-tolerant software system for small output spaces. The effectiveness of the back-to-back testing process was investigated. Version 3.0 of the RSDIMU-ATS, a semi-automated test bed for certification testing of RSDIMU software, was prepared and distributed. Software reliability estimation methods based on non-random sampling are being studied. The investigation of existing fault-tolerance models was continued and formulation of new models was initiated

    Bound states in two spatial dimensions in the non-central case

    Full text link
    We derive a bound on the total number of negative energy bound states in a potential in two spatial dimensions by using an adaptation of the Schwinger method to derive the Birman-Schwinger bound in three dimensions. Specifically, counting the number of bound states in a potential gV for g=1 is replaced by counting the number of g_i's for which zero energy bound states exist, and then the kernel of the integral equation for the zero-energy wave functon is symmetrized. One of the keys of the solution is the replacement of an inhomogeneous integral equation by a homogeneous integral equation.Comment: Work supported in part by the U.S. Department of Energy under Grant No. DE-FG02-84-ER4015

    Design, fabrication, and testing of silicon microgimbals for super-compact rigid disk drives

    Get PDF
    This paper documents results related to design optimization, fabrication process refinement, and micron-level static/dynamic testing of silicon micromachined microgimbals that have applications in super-compact computer disk drives as well as many other engineering applications of microstructures and microactuators requiring significant out-of-plane motions. The objective of the optimization effort is to increase the in-plane to out-of-plane stiffness ratio in order to maximize compliance and servo bandwidth and to increase the displacement to strain ratio to maximize the shock resistance of the microgimbals, while that of the process modification effort is to simplify in order to reduce manufacturing cost. The testing effort is to characterize both the static and dynamic performance using precision instrumentation in order to compare various prototype designs
    corecore