20,197 research outputs found

    QED Radiative Correction for the Single-W Production using a Parton Shower Method

    Get PDF
    A parton shower method for the photonic radiative correction is applied to the single W-boson production processes. The energy scale for the evolution of the parton shower is determined so that the correct soft-photon emission is reproduced. Photon spectra radiated from the partons are compared with those from the exact matrix elements, and show a good agreement. Possible errors due to a inappropriate energy-scale selection or due to the ambiguity of energy scale determination are also discussed, particularly for the measurements on triple gauge-couplings.Comment: 17 pages, 6 Postscript figure

    QED Radiative Corrections to the Non-annihilation Processes Using the Structure Function and the Parton Shower

    Get PDF
    Inclusion of the QED higher order radiative corrections in the two-photon process, e+e- -> e+e- mu+mu-, is examined by means of the structure function and the parton shower. Results are compared with the exact O(α)O(\alpha) calculations and give a good agreement. These two methods should be universally applicable to any other non-annihilation processes like the single-W productions in the e+e- collisions. In this case, however, the energy scale for the evolution by the renormalization-group equation should be chosen properly depending on the dominant diagrams for the given process. A method to find the most suitable energy scale is proposed.Comment: 17 pages, LaTeX, 5 figure

    A Relativistic Description of Gentry's New Redshift Interpretation

    Get PDF
    We obtain a new expression of the Friedmann-Robertson-Walker metric, which is an analogue of a static chart of the de Sitter space-time. The reduced metric contains two functions, M(T,R)M(T,R) and Ψ(T,R)\Psi(T,R), which are interpreted as, respectively, the mass function and the gravitational potential. We find that, near the coordinate origin, the reduced metric can be approximated in a static form and that the approximated metric function, Ψ(R)\Psi(R), satisfies the Poisson equation. Moreover, when the model parameters of the Friedmann-Robertson-Walker metric are suitably chosen, the approximated metric coincides with exact solutions of the Einstein equation with the perfect fluid matter. We then solve the radial geodesics on the approximated space-time to obtain the distance-redshift relation of geodesic sources observed by the comoving observer at the origin. We find that the redshift is expressed in terms of a peculiar velocity of the source and the metric function, Ψ(R)\Psi(R), evaluated at the source position, and one may think that this is a new interpretation of {\it Gentry's new redshift interpretation}.Comment: 11 pages. Submitted to Modern Physics Letters

    The small-scale structure of photospheric convection retrieved by a deconvolution technique applied to Hinode/SP data

    Full text link
    Solar granules are bright patterns surrounded by dark channels called intergranular lanes in the solar photosphere and are a manifestation of overshooting convection. Observational studies generally find stronger upflows in granules and weaker downflows in intergranular lanes. This trend is, however, inconsistent with the results of numerical simulations in which downflows are stronger than upflows through the joint action of gravitational acceleration/deceleration and pressure gradients. One cause of this discrepancy is the image degradation caused by optical distortion and light diffraction and scattering that takes place in an imaging instrument. We apply a deconvolution technique to Hinode/SP data in an attempt to recover the original solar scene. Our results show a significant enhancement in both, the convective upflows and downflows, but particularly for the latter. After deconvolution, the up- and downflows reach maximum amplitudes of -3.0 km/s and +3.0 km/s at an average geometrical height of roughly 50 km, respectively. We found that the velocity distributions after deconvolution match those derived from numerical simulations. After deconvolution the net LOS velocity averaged over the whole FOV lies close to zero as expected in a rough sense from mass balance.Comment: 32 pages, 13 figures, accepted for publication in Ap
    corecore